BackgroundNKX2.5 is a transcription factor transiently expressed during thyroid organogenesis. Recently, several works have pointed out the oncogenic role of NKX2.5 in a variety of tumors. We therefore hypothesized that NKX2.5 could also play a role in thyroid cancer.MethodsThe validation of NKX2.5 expression was assessed by immunohistochemistry analysis in a Brazilian case series of 10 papillary thyroid carcinoma (PTC) patients. Then, the long-term prognostic value of NKX2.5 and its correlation with clinicopathologic features of 51 PTC patients was evaluated in a cohort with 10-years follow-up (1990–1999). Besides, the effect of NKX2.5 overexpression on thyroid differentiation markers and function was also investigated in a non-tumor thyroid cell line (PCCL3).ResultsNKX2.5 was shown to be expressed in most PTC samples (8/10, case series; 27/51, cohort). Patients who had tumors expressing NKX2.5 showed lower rates of persistence/recurrence (p = 0.013). Overexpression of NKX2.5 in PCCL3 cells led to: 1) downregulation of thyroid differentiation markers (thyrotropin receptor, thyroperoxidase and sodium-iodide symporter); 2) reduced iodide uptake; 3) increased extracellular H2O2 generation, dual oxidase 1 mRNA levels and activity of DuOx1 promoter.ConclusionsIn summary, NKX2.5 is expressed in most PTC samples analyzed and its presence correlates to better prognosis of PTC. In vitro, NKX2.5 overexpression reduces the expression of thyroid differentiation markers and increases ROS production. Thus, our data suggests that NKX2.5 could play a role in thyroid carcinogenesis.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4399-1) contains supplementary material, which is available to authorized users.
The production of H2O2, which is essential to thyroid hormone synthesis, involves two NADPH oxidases: dual oxidases 1 and 2 (DuOx1 and DuOx2). A functional study with human DuOx genes and their 5′-flanking regions showed that DuOx1 and -2 promoters are different from thyroid-specific gene promoters. Furthermore, their transcriptional activities are not restricted to thyroid cells. While regulation of Tg (thyroglobulin) and TPO (thyroperoxidase) expression have been extensively studied, DuOx2 promoter regulation by hormones and transcriptional factors need to be more explored. Herein we investigated the role of TSH, insulin and insulin-like growth factor 1 (IGF-1), as well as the cAMP effect on DuOx2 promoter (ptx41) activity in transfected rat thyroid cell lines (PCCL3). We also assessed DuOx2 promoter activity in the presence of transcriptional factors crucial to thyroid development such as TTF-1 (thyroid transcription factor 1), PAX8, CREB, DREAM, Nkx2.5 and the coactivator TAZ in HeLa and HEK 293T-transfected cells. Our results show that TSH and forskolin, which increase cAMP in thyroid cells, stimulated DuOx2 promoter activity. IGF-1 led to pronounced stimulation, while insulin induction was not statistically different from DuOx2 promoter basal activity. All transcriptional factors selected for this work and coactivator TAZ, except DREAM, stimulated DuOx2 promoter activity. Moreover, Nkx2.5 and TAZ synergistically increased DuOx2 promoter activity. In conclusion, we show that DuOx2 expression is regulated by hormones and transcription factors involved in thyroid organogenesis and carcinogenesis, reinforcing the importance of the control of H2O2 generation in the thyroid.
Na /I symporter (NIS) transports iodide into thyrocytes, a fundamental step for thyroid hormone biosynthesis. Our aim was to evaluate NIS regulation in different status of goitrogenesis and its underlying mechanisms. Wistar rats were treated with methimazole (MMI) for 5 and 21 days, to achieve different status of goiter. We then evaluated the effect of MMI removal for 1 day (R1d), after 5 (R1d-5d) or 21 (R1d-21d) days of MMI treatment. MMI increased thyroid weight, iodide uptake and in vitro TPO activity in a time-dependent way. Although MMI removal evoked a rapid normalization of TPO activity in R1d-5d, it was still high in R1d-21d. On the other hand, iodide uptake was rapidly down-regulated in R1d-21d, but not in R1d-5d, suggesting that the increased TPO activity in R1d-21d led to increased intraglandular organified iodine (I-X), which is known to inhibit iodide uptake. Since TGFβ has been shown to mediate some effects of I-X, we evaluated TGFβ and TGFβ receptor mRNA levels, which were increased in R1d-21d. Moreover, it has been demonstrated that TGFβ stimulates NOX4. Accordingly, our data revealed increased NOX4 expression and H O generation in R1d-21d. Finally, we evaluated the effect of H O on NIS function and mRNA levels in PCCL3 thyroid cell line, which were reduced. Thus, the present study suggests that there is a relationship between the size of the goiter and NIS regulation and that the mechanism might involve I-X, TGFβ, NOX4 and increased ROS production.
Diabetes mellitus is a chronic disease that affects over 382 million people worldwide. Type-1 Diabetes (T1D) is classified as an autoimmune disease that results from pancreatic β-cell destruction and insulin deficiency. Type-2 Diabetes (T2D) is characterized principally by insulin resistance in target tissues followed by decreased insulin production due to β-cell failure. It is challenging to identify immunological markers such as inflammatory molecules that are triggered in response to changes during the pathogenesis of diabetes. APRIL is an important member of the TNF family and has been linked to chronic inflammatory processes of various diseases since its discovery in 1998. Therefore, this study aimed to evaluate APRIL serum levels in T1D and T2D. For this, we used the ELISA assay to measure serum APRIL levels of 33 T1D and 30 T2D patients, and non-diabetic subjects as control group. Our data showed a decrease in serum APRIL levels in T1D patients when compared with healthy individuals. The same pattern was observed in the group of T2D patients when compared with the control. The decrease of serum APRIL levels in diabetic patients suggests that this cytokine has a role in T1D and T2D. Diabetes is already considered as an inflammatory condition with different cytokines being implicated in its physiopathology. Our data suggest that APRIL can be considered as a potential modulating cytokine in the inflammatory process of diabetes.
Hashimoto’s thyroiditis (HT) is an autoimmune and inflammatory disease in which antibodies are directed against the thyroid gland leading to chronic inflammation and hypothyroidism. The autoimmunity against thyroid antigens can be associated to genetic background and environmental factors. Thyroid peroxidase (TPO) and thyroglobulin (TG) are the major autoantigens for characterizing the disease. HT is related to the activation of autoreactive CD4+ T cells, CD8+ cytotoxic T cells and antithyroid antibody producing-B cells. Among several cytokines related to the pathogenesis of HT, a proliferation-inducing ligand (APRIL) has been studied in the context of the establishment and/or maintenance of autoimmune diseases. The role of APRIL in the pathogenesis of HT is still poorly understood. Therefore, the present study aimed to compare APRIL serum concentration in HT patients and healthy donors by ELISA. We observed a significant decrease in APRIL concentration in HT patients when compared to the control group, and a positive correlation between APRIL level and age. Our results suggest that the APRIL molecule can compose the cytokine profile along the inflammatory response in HT, however, other investigations should be proposed to understand its molecular mechanisms via specific receptors and other regulatory loops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.