The gut-brain axis is known to modulate behavioral and immune responses in animals; evidence supporting this modulation in chickens, however, is elusive. Here, we analyzed the effects of heat stress and/orClostridium perfringens (CP) infection on behavior, intestinal morphology, brain activity, and corticosterone serum levels in chickens. Broilers were randomly divided into 5 equal groups: a naïve group (N), a thioglycolate group (T), a thioglycolate heat-stressed group (T/HS35), an infected group (I), and an infected/stressed (I/HS35) group. Broilers in the I and I/HS35 groups were experimentally infected withClostridium perfringensfrom the 15th to the 19th day of life. Heat stress (35±1°C) was constantly applied to the broilers in the stressed groups from the 14th to the 19th day of life. Our data showed that heat stress andC. perfringensinfection produced significant differential responses in the chickens' behavior and in c-fosexpression in the paraventricular nucleus of the hypothalamus (PVN), nucleus taenia of the amygdala (Tn), medial preoptic area (POM), andglobus pallidus (GP) of the chickens. Heat stress ameliorated some of the intestinal lesions and the neuroendocrine changes induced byC. perfringensin the birds. Our results suggest the existence of clear relationships between the degree of intestinal lesions, the chickens' behavioral outcomes, brain activity, and serum levels of corticosterone. Together, they reinforce the importance of neuroimmunomodulation and especially of brain-gut axis interactions.
Auditory hypersensitivity in autism is frequently observed in clinics. Dysfunction in the auditory brainstem has been suspected. We have established autism model rats using prenatal thalidomide exposure. Here we investigated whether abnormal response occurs in the brainstem following sound stimulus in autism model rats. Autism model rats were prepared by prenatal exposure to thalidomide on embryonic days 9 and 10 in pregnant rats. Then, the animals were exposed to 16‐kHz pure tone auditory stimulus and c‐Fos immunostaining was performed to examine the neuronal activity on postnatal day 49 to 51. Following sound stimulus, increased number of c‐Fos‐positive neurons was observed in the medial nucleus of the trapezoid body of autism model rats compared with the control rats. These results suggest that prenatal thalidomide might cause altered processing of auditory stimulus, leading to the characteristics of auditory hypersensitivity in autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.