Optical coherence tomography (OCT) is a growing imaging technique for real-time early diagnosis of digestive system diseases. As with other well-established medical imaging modalities, OCT requires validated imaging performance and standardized test methods for performance assessment. A major limitation in the development and testing of new imaging technologies is the lack of models for simultaneous clinical procedure emulation and characterization of healthy and diseased tissues. Currently, the former can be tested in large animal models and the latter can be tested in small animal disease models or excised human biopsy samples. In this study, a 23 cm by 23 cm optical phantom was developed to mimic the thickness and near-infrared optical properties of each anatomical layer of a human colon, as well as the surface topography of colorectal polyps and visual appearance compatible with white light endoscopy.
Background and study aims Accurate real-time characterization of colorectal neoplastic lesions (CNLs) during colonoscopy is important for deciding appropriate treatment. No studies have evaluated whether still images or video clips are better for characterization. We compared histological predictions and size estimations of CNLs between two groups of gastroenterologists: one viewing still images and the other viewing video clips.
Materials and methods Participants were shown 20 CNLs as either 3–5 still images or a video clip. Three endoscopy experts obtained the images using high-definition white light and virtual chromoendoscopy without magnification. Stratified randomization was performed according to experience. For each lesion, participants assessed the size and histological subtype according to the CONECCT classification (hyperplastic polyp [IH], sessile serrated lesion [IS], adenoma [IIA], high-risk adenoma or superficial adenocarcinoma [IIC], or deeply invasive adenocarcinoma [III]). The correct histological status and size were defined by the pathology reports or combined criteria between histology and expert opinion for high-risk adenoma or superficial adenocarcinoma (CONECCT IIC).
Results 332 participants were randomized and 233 performed the characterization. Participants comprised 118 residents, 75 gastroenterologists, and 40 endoscopy experts; 47.6 % were shown still images and 52.4 % viewed video clips. There was no statistically significant difference between the two groups in histological prediction, our primary end point. However, the lesion size was better assessed using still images than video clips (P = 0.03).
Conclusions Video clips did not improve the histological prediction of CNLs compared with still images. Size was better assessed using still images.
Significance: Endoscopic optical coherence tomography (OCT) enables real-time optical biopsy of human organs. Endoscopic probes require miniaturization of optics, which in turn limits field of view. When larger imaging areas are needed such as in the gastrointestinal tract, the operator must manually scan the probe over the tissue to extend the field of view, often resulting in an imperfect scanning pattern and increased risk of missing lesions. Automatic scanning has the potential to extend the field of view of OCT, allowing the user to focus on image interpretation during real-time observations. Aim: This work proposes an automatic scanning using a steerable OCT catheter integrated with a robotized interventional flexible endoscope. The aim is to extend the field of view of a lowprofile OCT probe while improving scanning accuracy and maintaining a stable endoscope's position during minimally invasive treatment of colorectal lesions.Approach: A geometrical model of the steerable OCT catheter was developed for estimating the volume of the accessible workspace. Experimental validation was done using electromagnetic tracking of the catheter's positions. An exemplary scanning path was then selected within the available workspace to evaluate motion performance with the robotized steerable OCT catheter. Automatic scanning is compared to a teleoperated one and a manual scanning with a nonrobotized flexible endoscope. Spectral arc length, scanning area, spacing between scan trajectories, and time are metrics used to quantify performance.
Results:The available scanning workspace was experimentally estimated to be 255 cm 3 . The automatic scanning mode provided the highest accuracy and smoothness of motion with spectral arc length of −3.18, covered area of 10.11 cm 2 , 1.54 mm spacing between 15 sweep trajectories, maximum translation of 27.99 mm, and time to finish of 3.11s.Conclusions: Automatic modality improved the accuracy of scanning within a large workspace. The robotic capability provided better control to the user to define spacing resolution of scanning patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.