Milk yield is partly influenced by the number of mammary epithelial cells (MEC) in the mammary gland. It is well known that variations in MEC number are due to cell proliferation and apoptosis. The exfoliation of MEC from the mammary epithelium into milk is another process that might influence MEC number in the mammary tissue. The rate of MEC exfoliation can be assessed by measuring the milk MEC content through light microscopy, flow cytometry analysis, or an immuno-magnetic method for MEC purification. Various experimental models have been used to affect milk yield and study the rate of MEC exfoliation. Reducing milking frequency from twice to once daily did not seem to have any effect on MEC loss in goat and cow milk after 7 d, but increased MEC loss per day in goats when applied for a longer period. An increase in MEC exfoliation was also observed during short days as compared with long days, or in response to an endotoxin-induced mastitis in cows. Other animal models were designed to investigate the endocrine control of the exfoliation process and its link with milk production. Suppression of ovarian steroids by ovariectomy resulted in a greater persistency of lactation and a decrease in MEC exfoliation. Administering prolactin inhibitors during lactation or at dry-off enhanced MEC exfoliation, whereas exogenous prolactin during lactation tended to prevent the negative effect of prolactin inhibitors. These findings suggest that prolactin could regulate MEC exfoliation. In most of these studies, variations of MEC exfoliation were associated with variations in milk yield and changes in mammary epithelium integrity. Exfoliation of MEC could thus influence milk yield by regulating MEC number in mammary tissue.
In dairy cows, feed restriction is known to decrease milk yield by reducing the number of mammary epithelial cells (MEC) in the udder through a shift in the MEC proliferation-apoptosis balance, by reducing the metabolic activity of MEC, or both. The exfoliation of MEC from the mammary epithelium into milk is another process that may participate in regulating the number of MEC during feed restriction. The aim of the present study was to clarify the mechanisms that underlie the milk yield loss induced by feed restriction. Nineteen Holstein dairy cows producing 40.0 ± 0.7 kg/d at 77 ± 5 d in milk were divided into a control group (n = 9) and a feed-restricted group (n = 10). Ad libitum dry matter intake (DMI) was recorded during a pre-experimental period of 2 wk. For 29 d (period 1), cows were fed either 100 (control) or 80% (feedrestricted) of their ad libitum DMI measured during the pre-experimental period. Then, all cows were fed ad libitum for 35 d (period 2). Milk production and DMI were recorded daily. Blood and milk samples were collected once during the pre-experimental period; on d 5, 9, and 27 of period 1; and on d 5, 9, and 30 of period 2. Mammary epithelial cells were purified from milk using an immunomagnetic method to determine the rate of MEC exfoliation. Mammary tissue samples were collected by biopsy at the end of each period to analyze the rates of cell proliferation and apoptosis and the expression of genes involved in synthesizing constituents of milk. Feed restriction decreased milk yield by 3 kg/d but had no effect on rates of proliferation and apoptosis in the mammary tissue or on the expression of genes involved in milk synthesis. The daily MEC exfoliation rate was 65% greater in feed-restricted cows than in control cows. These effects in feed-restricted cows were associated with reduced insulin-like growth factor-1 and cortisol plasma concentrations. When all cows returned to ad libitum feeding, no significant difference on milk yield or MEC exfoliation rate was observed between feed-restricted and control cows, but refeeding increased prolactin release during milking. These results show that the exfoliation process may play a role in regulating the number of MEC in the udders of dairy cows during feed restriction without any carryover effect on their milk production.
Milk is produced in the udder by mammary epithelial cells (MEC). Milk contains MEC, which are gradually exfoliated from the epithelium during lactation. Isolation of MEC from milk using immunomagnetic separation may be a useful non-invasive method to investigate transcriptional regulations in ruminants’ udder. This review aims to describe the process of isolating MEC from milk, to provide an overview on the studies that use this method to analyze gene expression by qRT PCR and to evaluate the validity of this method by analyzing and comparing the results between studies. In several goat and cow studies, consistent reductions in alpha-lactalbumin mRNA levels during once-daily milking (ODM) and in SLC2A1 mRNA level during feed restriction are observed. The effect of ODM on alpha-lactalbumin mRNA level was similarly observed in milk isolated MEC and mammary biopsy. Moreover, we and others showed decreasing alpha-lactalbumin and increasing BAX mRNA levels with advanced stages of lactation in dairy cows and buffalo. The relevance of using the milk-isolated MEC method to analyze mammary gene expression is proven, as the transcript variations were also consistent with milk yield and composition variations under the effect of different factors such as prolactin inhibition or photoperiod. However, the RNA from milk-isolated MEC is particularly sensitive to degradation. This could explain the differences obtained between milk-isolated MEC and mammary biopsy in two studies where gene expression was compared using qRT-PCR or RNA Sequencing analyses. As a conclusion, when the RNA quality is conserved, MEC isolated from milk are a valuable, non-invasive source of mammary mRNA to study various factors that impact milk yield and composition (ODM, feeding level, endocrine status, photoperiod modulation, and stage of lactation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.