Silica particles induce lung inflammation and fibrosis. Here we show that stimulator of interferon genes (STING) is essential for silica-induced lung inflammation. In mice, silica induces lung cell death and self-dsDNA release in the bronchoalveolar space that activates STING pathway. Degradation of extracellular self-dsDNA by DNase I inhibits silica-induced STING activation and the downstream type I IFN response. Patients with silicosis have increased circulating dsDNA and CXCL10 in sputum, and patients with fibrotic interstitial lung disease display STING activation and CXCL10 in the lung. In vitro, while mitochondrial dsDNA is sensed by cGAS-STING in dendritic cells, in macrophages extracellular dsDNA activates STING independent of cGAS after silica exposure. These results reveal an essential function of STING-mediated self-dsDNA sensing after silica exposure, and identify DNase I as a potential therapy for silica-induced lung inflammation.
Live attenuated RNA viruses make highly efficient vaccines. Among them, measles virus (MV) vaccine has been given to a very large number of children and has been shown to be highly efficacious and safe. Therefore, this vaccine might be a very promising vector to immunize children against both measles and other infectious agents, such as human immunodeficiency virus. A vector was previously derived from the Edmonston B strain of MV, a vaccine strain abandoned 25 years ago. Sequence analysis revealed that the genome of this vector diverges from Edmonston B by 10 amino acid substitutions not related to any Edmonston subgroup. Here we describe an infectious cDNA for the Schwarz/Moraten strain, a widely used MV vaccine. This cDNA was constructed from a batch of commercial vaccine. The extremities of the cDNA were engineered in order to maximize virus yield during rescue. A previously described helper cell-based rescue system was adapted by cocultivating transfected cells on primary chicken embryo fibroblasts, the cells used to produce the Schwarz/ Moraten vaccine. After two passages the sequence of the rescued virus was identical to that of the cDNA and of the published Schwarz/Moraten sequence. Two additional transcription units were introduced in the cDNA for cloning foreign genetic material. The immunogenicity of rescued virus was studied in macaques and in mice transgenic for the CD46 MV receptor. Antibody titers and T-cell responses (ELISpot) in animals inoculated with low doses of rescued virus were identical to those obtained with commercial Schwarz MV vaccine. In contrast, the immunogenicity of the previously described Edmonston B strain-derived MV clone was much lower. This new molecular clone will allow for the production of MV vaccine without having to rely on seed stocks. The additional transcription units allow expressing heterologous antigens, thereby providing polyvalent vaccines based on an approved, safe, and efficient MV vaccine strain that is used worldwide.
؉ and CD4 ؉ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.
An inhibitor of the cytotoxic functions (ICF) mediated by human immunodeficiency virus (HIV)- or HLA-specific cytotoxic T lymphocytes, natural killer and lymphokine-activated killer (LAK) cells is secreted by CD8+CD57+ T lymphocytes, a subset expanded during infection with HIV and after bone marrow transplantation. We previously showed an apparent molecular mass of 20-30 kDa for this soluble glycosylated concanavalin A-binding inhibitor which is distinct from known cytokines. Here, we report a characterization of the mechanism of action of this CD8+CD57+ ICF. We show that the ICF-induced inhibition of LAK cell cytolytic activity is transient, with a spontaneous recovery of cytolytic potential after 18 h. When testing interactions of ICF with a large set of cytokines we found that the ICF-mediated inhibition of cytotoxic functions is antagonized by two cytokines: recombinant interleukin (rIL)-4 and recombinant interferon (rIFN)-gamma. Finally, we show that ICF acts at the level of cytolytic effector cells, where it induces a significant increase of cyclic AMP (cAMP) level. In contrast, no modification of either cell surface antigen expression or of target/effector cell conjugate formation could be evidenced. Addition of rIL-4 and rIFN-gamma reverses such an increase of cAMP levels and in parallel restores the cytolytic activity. Altogether, these data demonstrate that the glycoprotein ICF produced by CD8+CD57+ cells (1) inhibits cell-mediated cytotoxicity by sensitizing cytolytic effector cells to the cAMP pathway, and (2) is part of a cytokine network controlling cell-mediated cytotoxic functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.