Staphylococcus aureus (S. aureus) is a common and virulent human pathogen causing several serious illnesses including skin abscesses, wound infections, endocarditis, osteomyelitis, pneumonia, and toxic shock syndrome. Antibiotics were first introduced in the 1940s, leading to the belief that bacterial illnesses would be eradicated. However, microorganisms, including S. aureus, began to develop antibiotic resistance from the increased use and abuse of antibiotics. Antibiotic resistance is now one of the most serious threats to global public health. Bacteria like methicillin-resistant Staphylococcus aureus (MRSA) remain a major problem despite several efforts to find new antibiotics. New treatment approaches are required, with bacteriophage treatment, a non-antibiotic strategy to treat bacterial infections, showing particular promise. The ability of S. aureus to resist a wide range of antibiotics makes it an ideal candidate for phage therapy studies. Bacteriophages have a relatively restricted range of action, enabling them to target pathogenic bacteria. Their usage, usually in the form of a cocktail of bacteriophages, allows for more focused treatment while also overcoming the emergence of resistance. However, many obstacles remain, particularly in terms of their effects in vivo, necessitating the development of animal models to assess the bacteriophage efficiency. Here, we provide a review of the animal models, the various clinical case treatments, and clinical trials for S. aureus phage therapy.
Staphylococcus pettenkoferi is a coagulase-negative Staphylococcus identified in 2002 that has been implicated in human diseases as an opportunistic pathogenic bacterium. Its multiresistant character is becoming a major health problem, yet the pathogenicity of S. pettenkoferi is poorly characterized. In this study, the pathogenicity of a S. pettenkoferi clinical isolate from diabetic foot osteomyelitis was compared with a Staphylococcus aureus strain in various in vitro and in vivo experiments. Growth kinetics were compared against S. aureus, and bacteria survival was assessed in the RAW 264.7 murine macrophage cell line, the THP-1 human leukemia monocytic cell line, and the HaCaT human keratinocyte cell line. Ex vivo analysis was performed in whole blood survival assays and in vivo assays via the infection model of zebrafish embryos. Moreover, whole-genome analysis was performed. Our results show that S. pettenkoferi was able to survive in human blood, human keratinocytes, murine macrophages, and human macrophages. S. pettenkoferi demonstrated its virulence by causing substantial embryo mortality in the zebrafish model. Genomic analysis revealed virulence factors such as biofilm-encoding genes (e.g., icaABCD; rsbUVW) and regulator-encoding genes (e.g., agr, mgrA, sarA, saeS) well characterized in S. aureus. This study thus advances the knowledge of this under-investigated pathogen and validates the zebrafish infection model for this bacterium.
Staphylococcus pettenkoferi is a coagulase-negative Staphylococcus identified in 2002 that has been implicated in human diseases as an opportunistic pathogenic bacterium. Its multiresistant character is becoming a major health problem, yet the pathogenicity of S. pettenkoferi is poorly characterized. In this study, pathogenicity of a S. pettenkoferi clinical isolate from diabetic foot osteomyelitis was compared to a Staphylococcus aureus strain in various in vitro and in vivo experiments. Growth kinetics were compared against S. aureus and bacteria survival was assessed in the RAW 264.7 murine macrophage cell line, the THP-1 human leukemia monocytic cell line and the HaCaT human keratinocyte cell line. Ex vivo analysis were performed in whole blood survival assays, and in vivo assays via the infection model of zebrafish embryos. Moreover, whole-genome analysis was performed. Our results showed that S. pettenkoferi was able to survive in human blood, human keratinocytes, murine macrophages, and human macrophages. S. pettenkoferi demonstrated its virulence by causing substantial embryo mortality in the zebrafish model. Genomic analysis revealed virulence factors such as biofilm- (e.g., icaABCD; rsbUVW) and regulator- (e.g., agr, mgrA, sarA, saeS) encoding genes well characterized in S. aureus. This study thus advances the knowledge of this under investigated pathogen and validates the zebrafish infection model for this bacterium.
Background The transition from colonization to invasion is critical in diabetic foot ulcer (DFU). Staphylococcus aureus can colonize DFU, or invade the underlying tissues, causing serious infections. The ROSA-like prophage has previously been implicated in strain colonization characteristics of S aureus isolates in uninfected ulcers. Methods In this study, we investigated this prophage in the S aureus-colonizing strain using an in vitro chronic wound medium mimicking the chronic wound environment. Results Chronic wound medium reduced bacterial growth and increased biofilm formation and virulence in a zebrafish model. Conclusions The ROSA-like prophage promoted intracellular survival of S aureus-colonizing strain in macrophages, keratinocytes, and osteoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.