We aimed to characterise lymphoid neogenesis in bronchiectasis and cystic fibrosis (CF) lungs and to examine the role of bacterial infection.Lymphoid aggregates were examined using immunohistochemical staining and morphometric analysis in surgical lung sections obtained from nonsmokers and patients with bronchiectasis or CF. Sterile, - or-coated agarose beads were instilled intratracheally in mice. Kinetics of lymphoid neogenesis and chemokine expression were examined over 14 days.Lymphoid aggregates were scarce in human lungs of nonsmokers, but numerous peribronchial lymphoid aggregates containing B-lymphocytes, T-lymphocytes, germinal centres and high endothelial venules were found in bronchiectasis and CF. Mouse lungs contained no lymphoid aggregate at baseline. During persistent or airway infection peribronchial lymphoid neogenesis occurred. At day 14 after instillation, lymphoid aggregates expressed markers of tertiary lymphoid organs and the chemokines CXCL12 and CXCL13. The airway epithelium was an important site of CXCL12, CXCL13 and interleukin-17A expression, which began at day 1 after instillation.Peribronchial tertiary lymphoid organs are present in bronchiectasis and in CF, and persistent bacterial infection triggered peribronchial lymphoid neogenesis in mice. Peribronchial localisation of tertiary lymphoid organs and epithelial expression of chemokines suggest roles for airway epithelium in lymphoid neogenesis.
Background In cystic fibrosis (CF), recurrent infections suggest impaired mucosal immunity but whether production of secretory immunoglobulin A (S-IgA) is impaired remains elusive. S-IgA is generated following polymeric immunoglobulin receptor (pIgR)-mediated transepithelial transport of dimeric (d-)IgA and represents a major defence through neutralisation of inhaled pathogens like Pseudomonas aeruginosa ( Pa ). Methods Human lung tissue (n = 74), human sputum (n = 118), primary human bronchial epithelial cells (HBEC) (cultured in air-liquid interface) (n = 19) and mouse lung tissue and bronchoalveolar lavage were studied for pIgR expression, IgA secretion and regulation. Findings Increased epithelial pIgR immunostaining was observed in CF lung explants, associated with more IgA-producing plasma cells, sputum and serum IgA, especially Pa -specific IgA. In contrast, pIgR and IgA transport were downregulated in F508del mice, CFTR-inhibited HBEC, and CF HBEC. Moreover, the unfolded protein response (UPR) due to F508del mutation, inhibited IgA transport in Calu-3 cells. Conversely, pIgR expression and IgA secretion were strongly upregulated following Pa lung infection in control and F508del mice, through an inflammatory host response involving interleukin-17. Interpretation A complex regulation of IgA secretion occurs in the CF lung, UPR induced by CFTR mutation/dysfunction inhibiting d-IgA transcytosis, and Pa infection unexpectedly unleashing this secretory defence mechanism. Funding This work was supported by the Forton's grant of the King Baudouin's Foundation, Belgium, the Fondazione Ricerca Fibrosi Cistica, Italy, and the Fonds National de la Recherche Scientifique, Belgium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.