Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
In the management of neurological diseases, the identification and quantification of axonal damage could allow for the improvement of diagnostic accuracy and prognostic assessment. Neurofilament light chain (NfL) is a neuronal cytoplasmic protein highly expressed in large calibre myelinated axons. Its levels increase in cerebrospinal fluid (CSF) and blood proportionally to the degree of axonal damage in a variety of neurological disorders, including inflammatory, neurodegenerative, traumatic and cerebrovascular diseases. New immunoassays able to detect biomarkers at ultralow levels have allowed for the measurement of NfL in blood, thus making it possible to easily and repeatedly measure NfL for monitoring diseases’ courses. Evidence that both CSF and blood NfL may serve as diagnostic, prognostic and monitoring biomarkers in neurological diseases is progressively increasing, and NfL is one of the most promising biomarkers to be used in clinical and research setting in the next future. Here we review the most important results on CSF and blood NfL and we discuss its potential applications and future directions.
Context Small single-center studies have shown that cerebrospinal fluid (CSF) biomarkers may be useful to identify incipient Alzheimer disease (AD) in patients with mild cognitive impairment (MCI), but large-scale multicenter studies have not been conducted. Objective To determine the diagnostic accuracy of CSF -amyloid 1-42 (A42), total tau protein (T-tau), and tau phosphorylated at position threonine 181 (P-tau) for predicting incipient AD in patients with MCI. Design, Setting, and Participants The study had 2 parts: a cross-sectional study involving patients with AD and controls to identify cut points, followed by a prospective cohort study involving patients with MCI, conducted 1990-2007. A total of 750 individuals with MCI, 529 with AD, and 304 controls were recruited by 12 centers in Europe and the United States. Individuals with MCI were followed up for at least 2 years or until symptoms had progressed to clinical dementia. Main Outcome Measures Sensitivity, specificity, positive and negative likelihood ratios (LRs) of CSF A42, T-tau, and P-tau for identifying incipient AD. Results During follow-up, 271 participants with MCI were diagnosed with AD and 59 with other dementias. The A42 assay in particular had considerable intersite variability. Patients who developed AD had lower median A42 (356; range, 96-1075 ng/L) and higher P-tau (81; range, 15-183 ng/L) and T-tau (582; range, 83-2174 ng/L) levels than MCI patients who did not develop AD during follow-up (579; range, 121-1420 ng/L for A42; 53; range, 15-163 ng/L for P-tau; and 294; range, 31-2483 ng/L for T-tau, PϽ.001). The area under the receiver operating characteristic curve was 0.78 (95% confidence interval [CI], 0.75-0.82) for A42, 0.76 (95% CI, 0.72-0.80) for P-tau, and 0.79 (95% CI, 0.76-0.83) for T-tau. Cutoffs with sensitivity set to 85% were defined in the AD and control groups and tested in the MCI group, where the combination of A42/P-tau ratio and T-tau identified incipient AD with a sensitivity of 83% (95% CI, 78%-88%), specificity 72% (95% CI, 68%-76%), positive LR, 3.0 (95% CI, 2.5-3.4), and negative LR, 0.24 (95% CI, 0.21-0.28). The positive predictive value was 62% and the negative predictive value was 88%. Conclusions This multicenter study found that CSF A42, T-tau, and P-tau identify incipient AD with good accuracy, but less accurately than reported from single-center studies. Intersite assay variability highlights a need for standardization of analytical techniques and clinical procedures.
Biochemical markers have a central position in the diagnosis and management of patients in clinical medicine, and also in clinical research and drug development, also for brain disorders, such as Alzheimer’s disease. The enzyme-linked immunosorbent assay (ELISA) is frequently used for measurement of low-abundance biomarkers. However, the quality of ELISA methods varies, which may introduce both systematic and random errors. This urges the need for more rigorous control of assay performance, regardless of its use in a research setting, in clinical routine, or drug development. The aim of a method validation is to present objective evidence that a method fulfills the requirements for its intended use. Although much has been published on which parameters to investigate in a method validation, less is available on a detailed level on how to perform the corresponding experiments. To remedy this, standard operating procedures (SOPs) with step-by-step instructions for a number of different validation parameters is included in the present work together with a validation report template, which allow for a well-ordered presentation of the results. Even though the SOPs were developed with the intended use for immunochemical methods and to be used for multicenter evaluations, most of them are generic and can be used for other technologies as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.