Motions of the trans-p-coumaric acid carbonyl group following the photoexcitation of the R52Q mutant of photoactive yellow protein (PYP) are investigated, for the first time, by ultrafast time-resolved circular dichroism (TRCD) spectroscopy. TRCD is monitored in the near-ultraviolet, over a time scale of 10 ps. Immediately after excitation, TRCD is found to exhibit a large negative peak, which decays within a few picoseconds. A quantitative analysis of the signals shows that, upon excitation, the carbonyl group undergoes a fast (≪0.8 ps) and unidirectional flipping motion in the excited state with an angle of ca. 17-53°. For the subset of proteins that do not enter the signaling photocycle, TRCD provides strong evidence that the carbonyl group moves back to its initial position, leading to the formation of a nonreactive ground-state intermediate of trans conformation. The initial ground state is then restored within ca. 3 ps. Comparative study of R52Q and wild-type PYP provides direct evidence that the absence of Arg52 has no effect on the conformational changes of the chromophore during those steps.
The use of a fast temperature jump (T-jump) is a very powerful experiment aiming at studying protein denaturation dynamics. However, probing the secondary structure is a difficult challenge and rarely yields quantitative values. We present the technical implementation of far-UV circular dichroism in a nanosecond T-jump experiment and show that this experiment allows us to follow quantitatively the change in the helical fraction of a poly(glutamic acid) peptide during its thermal denaturation with 12 ns time resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.