SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Here, we investigated the interaction of this new coronavirus with Vero cells using high resolution scanning electron microscopy. Surface morphology, the interior of infected cells and the distribution of viral particles in both environments were observed 2 and 48 h after infection. We showed areas of viral processing, details of vacuole contents, and viral interactions with the cell surface. Intercellular connections were also approached, and viral particles were adhered to these extensions suggesting direct cell-to-cell transmission of SARS-CoV-2.
HighlightsWe used high resolution scanning electron microscopy to investigate Vero cells infected with SARS-CoV-2 at 2 and 48 hours post-infection. The central conclusions of this work include:• Infected cells display polarization of their cytosol forming a restricted viroplasm-like zone dedicated to virus production and morphogenesis.• This is the first demonstration of SARS-CoV-2 attachment by scanning electron microscopy.• This is the first scanning electron microscopy images of the interior of SARS-CoV-2 infected cells and exploration of their vacuole contents.• Perspective-viewing of bordering vesicles in close association with vacuoles.• Observation of membrane ruffles and structures suggestive of exocytosis on the surface of infected cells.• The first demonstration of viral surfing in cell-to-cell communication on SARS-CoV-2 infection.Abstract SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Here, we investigated the interaction of this new coronavirus with Vero cells using high resolution scanning electron microscopy. Surface morphology, the interior of infected cells and the distribution of viral particles in both environments were observed 2 and 48 hours after infection. We showed areas of viral processing, details of vacuole contents, and viral interactions with the cell surface. Intercellular connections were also approached, and viral particles were adhered to these extensions suggesting direct cell-to-cell transmission of SARS-CoV-2.
Phosphatidylserine (PS) exposure on the cell surface indicates apoptosis, but has also been related to evasion mechanisms of parasites, a concept known as apoptotic mimicry. Toxoplasma gondii mimics apoptotic cells by exposing PS, inducing secretion of TGF-beta1 by infected activated macrophages leading to degradation of inducible nitric oxide (NO) synthase, NO production inhibition and consequently persisting in these cells. Here PS+ and PS− subpopulation of tachyzoites were separated and the entrance mechanism, growth and NO inhibition in murine macrophages, and mice survival and pathology were analyzed. Infection index in resident macrophages was similar for both PS subpopulations but lower when compared to the total T. gondii population. Growth in resident macrophages was higher for the total T. gondii population, intermediate for the PS+ and lower for the PS− subpopulation. Production of NO by activated macrophages was inhibited after infection with the PS+ subpopulation and the total populations of tachyzoites. However, the PS− subpopulation was not able to inhibit NO production. PS+ subpopulation invaded macrophages by active penetration as indicated by tight-fitting vacuoles, but the PS− subpopulation entered macrophages by phagocytosis as suggested by loose-fitting vacuoles containing these tachyzoites. The entrance mechanism of both subpopulations was confirmed in a non-professional phagocytic cell line where only the PS+ tachyzoites were found inside these cells in tight-fitting vacuoles. Both subpopulations of T. gondii killed mice faster than the total population. Clear signs of inflammation and no tachyzoites were seen in the peritoneal cavity of mice infected with the PS− subpopulation. Moreover, mice infected with the PS+ subpopulation had no sign of inflammation and the parasite burden was intense. These results show that PS+ and PS− subpopulations of T. gondii are necessary for a successful toxoplasma infection indicating that both subpopulations are required to maintain the balance between inflammation and parasite growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.