Factor B is the central protease of the complement system of immune defense. Here, we present the crystal structure of human factor B at 2.3-Å resolution, which reveals how the five-domain proenzyme is kept securely inactive. The canonical activation helix of the Von Willebrand factor A (VWA) domain is displaced by a helix from the preceding domain linker. The two helices conformationally link the scissile-activation peptide and the metal ion-dependent adhesion site required for binding of the ligand C3b. The data suggest that C3b binding displaces the three N-terminal control domains and reshuffles the two central helices.Reshuffling of the helices releases the scissile bond for final proteolytic activation and generates a new interface between the VWA domain and the serine protease domain. This allosteric mechanism is crucial for tight regulation of the complementamplification step in the immune response.Factor B is a tightly regulated, highly specific serine protease. In its activated form, it catalyzes the central amplification step of complement activation to initiate inflammatory responses, cell lysis, phagocytosis and B-cell stimulation 1,2 . Factor B is activated through an assembly process: it binds surface-bound C3b, or its fluid-phase counterpart C3(H 2 O), after which it is cleaved by factor D into fragments Ba (residues 1-234) and Bb (residues 235-739) 3,4 . Fragment Ba dissociates from the complex, leaving behind the alternative pathway C3 convertase complex C3b-Bb, which cleaves C3 into C3a and C3b (see Fig. 1a). This protease complex is intrinsically instable. Once dissociated from the complex, Bb cannot reassociate with C3b 5 . A similar C3 convertase complex is formed upon activation of the classical (antibody-mediated) and lectin-binding pathways, comprised of C4 and C2, which are homologous to C3 and factor B, respectively. The proenzyme factor B consists of three N-terminal complement control protein (CCP) domains, connected by a 45-residue linker to a VWA domain and a C-terminal serine protease (SP) domain, which carries the catalytic center (Fig. 1a). The VWA and SP domains form fragment Bb, and CCP1 through CCP3 and the linker form fragment Ba. Binding of factor B to C3b depends on elements in fragment Ba 6 and the Mg 2+ -dependent metal ion-dependent adhesion site (MIDAS) motif in the VWA domain of fragment Bb 7 . The VWA domain is structurally homologous to inserted (I) domains in integrins. In I domains, ligand binding to the MIDAS is coupled to a B10-Å shift of the a7 activation helix, with concomitant domain rearrangements that activate the integrins 8,9 . Structures of a truncated Bb fragment 10 and its full-length homolog C2a 11 show variable positions of the a7 activation helix affecting the orientation of the VWA and SP domains, which indicates that a related mechanism may occur in convertase formation and dissociation. These structures, however, do not reveal the regulation of the proteolytic activity of factor B. In particular, it is unclear how factor B is maintained in its in...
Immune protection by the complement system critically depends on assembly of C3 convertases on the surface of pathogens and altered host cells. These short-lived protease complexes are formed through pro-convertases, which for the alternative pathway consist of the complement component C3b and the pro-enzyme factor B (FB). Here, we present the crystal structure at 2.2-A resolution, small-angle X-ray scattering and electron microscopy (EM) data of the pro-convertase formed by human FB and cobra venom factor (CVF), a potent homologue of C3b that generates more stable convertases. FB is loaded onto CVF through its pro-peptide Ba segment by specific contacts, which explain the specificity for the homologous C3b over the native C3 and inactive products iC3b and C3c. The protease segment Bb binds the carboxy terminus of CVF through the metal-ion dependent adhesion site of the Von Willebrand factor A-type domain. A possible dynamic equilibrium between a 'loading' and 'activation' state of the pro-convertase may explain the observed difference between the crystal structure of CVFB and the EM structure of C3bB. These insights into formation of convertases provide a basis for further development of complement therapeutics.
SummaryBinding of von Willebrand Factor (vWF) to sites of vascular injury is the first step of hemostasis. Collagen types I and III are important binding sites for vWF. We have previously determined the threedimensional structure of the collagen binding A3 domain of vWF (Huizinga et al., Structure 1997; 5: 1147). We hypothesized that the top face of this domain might be the collagen-binding site. Based on this hypothesis, we made seven vWF mutants (D934A/S936A, V1040A/ V1042A, D1046A, D1066A, D1069A, D1069R, and R1074A). Collagen binding of these mutants was investigated in ELISA and with Surface Plasmon Resonance (BIAcore). In addition, we studied collagen binding of mutants lacking the A2 or D4 domains, which flank the A3 domain.In ELISA, all point mutants and deletion mutants bound to collagen in amounts similar to wild type (WT)-vWF. In the BIAcore we found that WT-vWF has an apparent KD for collagen of 1-7 nM on a subunit base. The apparent kinetic parameters of the point mutants and deletion mutants were not significantly different from WT-vWF, except for DA2-vWF, which had a lower KD, indicating that the A2 domain somehow modulates binding of vWF to collagen type III.Based on our results, we conclude that the amino acid residues mutated by us are not critically involved in the interaction between vWF and collagen type III, which suggests that the collagen binding site is not located on the top face of the A3 domain.
Protein S is a vitamin K-dependent plasma protein that functions as an APC-cofactor, but also exhibits anticoagulant activity in the absence of APC. The Heerlen polymorphism of protein S is characterized by a Ser460Pro substitution and lacks glycosylation at Asn458. It is associated with decreased protein S levels due to selective deficiency of free protein S Heerlen. To understand the lack of thrombotic complications associated with the protein S Heerlen mutation, we compared recombinant protein S Heerlen, wild type (wt) protein S and plasma-derived protein S. wt-Protein S and protein S Heerlen each bound 1:1 to C4BP with dissociation constants of 0.27 and 0.33 nM, respectively. Both wt-protein S and protein S Heerlen, either free or in complex with C4BP, were equally active as prothrombinase inhibitors in the absence of APC. All three protein S preparations stimulated APC-catalyzed inactivation of normal FVa, FVa Leiden and FVIIIa to the same extent. If extrapolated to plasma, it is not likely that the decreased free protein S levels in carriers of the protein S Heerlen mutation are compensated by an increased anticoagulant activity of protein S Heerlen-C4BP complexes. It is possible that an unrecognized plasma factor selectively enhances the anticoagulant activity of protein S Heerlen. If not, the reduction of free protein S levels in heterozygous protein S Heerlen-carriers combined with (low) normal total protein S levels apparently minimally affects the total anticoagulant activity of protein S (APC-cofactor and APC-independent activity) and hence is not associated with increased risk of venous thrombosis.
Oxidative stress is suggested to be involved in several neurodegenerative diseases. One mechanism of oxidative damage is mediated by peroxynitrite, a neurotoxic reaction product of superoxide anion and nitric oxide. Expression of two cytokines and two key enzymes that are indicative of the presence of reactive oxygen intermediates and peroxynitrite was investigated in brain tissue of AIDS patients with and without AIDS dementia complex and HIV-seronegative controls. RNA expression of IL-1β, IL-10, inducible nitric oxide synthase, and superoxide dismutase (SOD) was found to be significantly higher in demented compared with nondemented patients. Immunohistochemical analysis showed that SOD was expressed in CD68-positive microglial cells while inducible nitric oxide synthase was detected in glial fibrillary acidic protein (GFAP)-positive astrocytes and in equal amounts in microglial cells. Approximately 70% of the HIV p24-Ag-positive macrophages did express SOD, suggesting a direct HIV-induced intracellular event. HIV-1 infection of macrophages resulted in both increased superoxide anion production and elevated SOD mRNA levels, compared with uninfected macrophages. Finally, we show that nitrotyrosine, the footprint of peroxynitrite, was found more intense and frequent in brain sections of demented patients compared with nondemented patients. These results indicate that, as a result of simultaneous production of superoxide anion and nitric oxide, peroxynitrite may contribute to the neuropathogenesis of HIV-1 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.