Adrenomedullin 2 (ADM2) is a recently discovered member of the calcitonin/calcitonin gene-related peptide family with an exon-intron structure similar to that of ADM. The mRNA of ADM2 is expressed in several tissues, including uterus and ovary. The present study was designed to assess the effects of ADM2 antagonist (ADM2(17-47)) infusion to pregnant rats on fetal and placental growth. On Day 15 of gestation, rats were implanted s.c. with osmotic minipumps delivering 50 and 200 mug per rat per day of ADM2(17-47) and were killed on Gestational Day 18. In ADM2(17-47)-treated rats, placental weights were significantly inhibited in a dose-related manner, with an 11% reduction in the group of rats receiving 200 microg/day, whereas the fetal weights were reduced by 17% without significant differences between the two doses. 2 In ADM2(17-47)-infused rats, increased apoptosis was demonstrated in the labyrinth and junctional zones of rat placenta by the TUNEL method compared with the control animals. Western blot analysis demonstrated that in ADM2(17-47)-treated rats Bcl-2, mitochondrial cytochrome c, and active caspase-9 and caspase-3 were significantly increased compared with the controls. No significant treatment-associated changes were observed in Bax, Bid, p53, and caspase-8 and caspase-10 proteins in the treated placentas. In addition, infusion of ADM2(17-47) caused a significant decline in the transcripts of nitric oxide synthase 3 (NOS3) and NOS2. These findings show that ADM2(17-47) infusion in rats during midpregnancy cause fetoplacental growth restriction through the activation of mitochondrial apoptotic pathways. This study demonstrates for the first time (to our knowledge) a potential role for ADM2 in placental functions during pregnancy.
The aim of the present study is to investigate whether immunoreactive (I) calcitonin gene-related peptide (CGRP) content is decreased in plasma and mesenteric arteries (resistance arteries) in middleaged rats and if so, whether sex steroid hormones enhance I-CGRP in middle-aged female rats. We also examined whether vascular CGRP receptor components, calcitonin receptor like receptor (CRLR) and receptor activity modifying protein 1 (RAMP 1 ) are elevated by sex steroid hormones treatment in middle-aged female rats. Young adult (3 months old) and middle-aged (10-12 months old) ovariectomized rats were treated subcutaneously with estradiol-17β (E 2 ; 2 mg), progesterone (P 4 ; 5 mg), E 2 +P 4 (2 mg + 20 mg) or placebo (control). Radioimmunoassay and Western blot analysis were performed to measure I-CGRP content and CGRP receptor components in dorsal root ganglia (DRG), in resistance arteries and in plasma. Immunofluorescent staining methods were employed to determine cellular localization of CRLR, RAMP 1 in resistance arteries. Our data demonstrated that I-CGRP content was significantly (p < 0.05) lower in the plasma and resistance arteries of middleaged female rats compared to young controls. Both RAMP 1 and CRLR were concentrated in vascular endothelium and the underlying smooth muscle cells. RAMP 1 but not CRLR appeared to be decreased in middle-aged rat vasculature. Chronic perfusion of sex steroid hormones to ovariectomized rats: (1) significantly (p < 0.05) elevated I-CGRP in the DRG and in the plasma, and (2) significantly elevated RAMP 1 (p < 0.05) but did not alter CRLR in resistance arteries. These data suggest that female sex steroid treatment enhances I-CGRP and its receptors, and thus regulate the blood pressure in aged female rats. KeywordsDorsal root ganglia ; Young adult; Aging; CGRP; Estrogen; Progesterone; Circulation; Vasculature Aging is one of the determinants of blood pressure (BP) variability and possibly contributes to the pathogenesis of essential hypertension and cardiovascular disease. The observation that BP is low in pre-menopausal women compared to age matched men and older women suggested that female sex steroid hormone therapy (HT) might influence hypertension in postmenopausal women [10]. Although, reports from Heart and Estrogen-Progestin Replacement Study (HERS), HERS2, and Women's Health Initiative (WHI) studies do not support beneficial vascular effects of HT, particularly in elderly hypertensive women, several studies have * Corresponding author. Tel.: +1 615 327 6511. pgangula@mmc.edu (P.R.R. Gangula).. suggested the beneficial effects of HT on reducing cardiovascular diseases in this population [9,10,37,39]. NIH Public AccessHypertension is a multi-factorial disorder. A number of mechanisms have been proposed for age-related increases in BP. Diminished baroreflex compensation is responsible for the failure to respond appropriately to rapid change in the BP, whereas increased vascular stiffness and diminished glomerular filtration may be responsible for the gradual inc...
Uterine arteries play a major role in regulating uteroplacental blood flow. Failure to maintain blood flow to the uteroplacental compartment during pregnancy often results in intrauterine growth retardation. Immunohistochemical staining of adrenomedullin (AM), an endogenous vasoactive peptide, in uterine artery was intense in pregnant compared to nonpregnant rats, but it is not known whether AM directly relaxes uterine artery or not. In this study, we elucidated the mechanisms of uterine artery relaxation by AM and its regulation by pregnancy and female sex steroids. AM was able to relax uterine artery, and this relaxation was influenced positively by pregnancy and estradiol as evidenced by the increased pD(2) and E(max) values of AM. Both pregnancy and estradiol treatment to ovariectomized rats amplified RAMP(3) expression in uterine arteries while progesterone had no effect. AM-induced uterine artery relaxation is predominantly endothelium-dependent. The AM receptor antagonist CGRP(8-37) is more potent than AM(22-52) in inhibiting the AM relaxation, indicating the involvement of AM(2) receptor subtype. Moreover, AM uses the classical nitric oxide-cyclic guanosine monophosphate pathway along with K(Ca) channels to mediate the vasodilatory effect in uterine artery. In conclusion, sensitivity of uterine artery to AM-induced relaxation is increased with pregnancy or estradiol treatment by increasing RAMP(3) expression, suggesting an important role for AM in regulating the uterine hemodynamics, probably maintaining uterine blood flow during pregnancy and in pre- and postmenopausal cardiovascular adaptation differences.
Fetal growth restriction resulting from reduced placental blood perfusion is a major cause of neonatal morbidity and mortality. Aside from intense surveillance and early delivery, there is no treatment for fetal growth restriction. A potential treatment associated with placental vasoconstriction is the class of PDE5 (phosphodiesterase type 5) inhibitors such as sildenafil, which is known to cross the placenta. In contrast, tadalafil, a more potent and selective PDE5 inhibitor has not been studied in pregnancy or experimental models of fetal growth restriction. Therefore, we compared the efficacy of these 2 PDE5 inhibitors for reversing vasoconstriction in an ex vivo human placental model and evaluating molecular and physiological responses. Sildenafil and tadalafil were infused into the intervillous space in a preconstricted human placental dual cotyledon, dual perfusion assay for the comparison of arteriole pressures and molecular indicators of drug inhibition. Results indicate a decrease arterial pressure with sildenafil citrate compared with controls, whereas tadalafil showed no difference. PDE5 and endothelial nitric oxide synthase activity were altered with sildenafil but not tadalafil. Sildenafil citrate improved preconstricted placental arterial perfusion in a human placental model, whereas tadalafil showed no response. It is possible that tadalafil did not cross the human placental barrier or was degraded by trophoblasts. This study supports human clinical trials exploring sildenafil as a potential treatment for improving fetal blood flow in fetal growth restriction associated with vasoconstriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.