The aim of this paper is to clarify the role of the nilpotent fermionic generator Q introduced in [6] and appearing in the hidden supergroup underlying the free differential algebra (FDA) of D=11 supergravity.We give a physical explanation of its role by looking at the gauge properties of the theory. We find that its presence is necessary, in order that the extra 1-forms of the hidden supergroup give rise to the correct gauge transformations of the p-forms of the FDA. This interpretation is actually valid for any supergravity containing antisymmetric tensor fields, and any supersymmetric FDA can always be traded for a hidden Lie superalgebra containing extra fermionic nilpotent generators.As an interesting example we construct the hidden superalgebra associated with the FDA of N = 2, D = 7 supergravity. In this case we are able to parametrize the mutually non local 2-and 3-form B (2) and B (3) in terms of hidden 1-forms and find that supersymmetry and gauge invariance require in general the presence of two nilpotent fermionic generators in the hidden algebra.We propose that our approach, where all the invariances of the FDA are expressed as Lie derivatives of the p-forms in the hidden supergroup manifold, could be an appropriate framework to discuss theories defined in enlarged versions of superspace recently considered in the literature, such us double field theory and its generalizations.
We present a supersymmetric extension of the exotic Newtonian Chern-Simons gravity theory in three spacetime dimensions. The underlying new non-relativistic superalgebra is obtained by expanding the N = 2 AdS superalgebra and can be written as two copies of the enhanced Nappi-Witten algebra, one of which is augmented by supersymmetry. We show that the exotic Newtonian superalgebra allows to introduce a cosmological constant to the extended Newtonian supergravity. Interestingly, the obtained supergravity action contains the extended Newton-Hooke supergravity as a sub-case.
We present a novel three-dimensional non-relativistic Chern-Simons supergravity theory invariant under a Maxwellian extended Bargmann superalgebra. We first study the nonrelativistic limits of the minimal and the N = 2 Maxwell superalgebras. We show that a well-defined Maxwellian extended Bargmann supergravity requires to construct by hand a supersymmetric extension of the Maxwellian extended Bargmann algebra by introducing additional fermionic and bosonic generators. The new non-relativistic supergravity action presented here contains the extended Bargmann supergravity as a sub-case.
The supersymmetry invariance of flat supergravity (i.e., supergravity in the absence of any internal scale in the Lagrangian) in four dimensions on a manifold with non-trivial boundary is explored. Using a geometric approach we find that the supersymmetry invariance of the Lagrangian requires to add appropriate boundary terms. This is achieved by considering additional gauge fields to the boundary without modifying the bulk Lagrangian. We also construct an enlarged supergravity model from which, in the vanishing cosmological constant limit, flat supergravity with a non-trivial boundary emerges properly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.