Previous experiments in anesthetized or decerebrate cats showed that the vestibular system participates in adjusting blood pressure during postural changes. The present experiments tested the hypothesis that removal of vestibular inputs in awake cats would affect orthostatic tolerance. Before the lesion, blood pressure typically remained within 10 mmHg of baseline values during nose-up-pitch body rotations of up to 60 degrees in amplitude. In contrast, bilateral peripheral vestibular lesions altered the pattern of orthostatic responses in all animals, and blood pressure fluctuated >10 mmHg from baseline values during most 60 degrees nose-up tilts in five of six animals. The deficit in correcting blood pressure was particularly large when the animal also was deprived of visual cues indicating position in space. During this testing condition, either a decrease or increase in blood pressure >10 mmHg in magnitude occurred in >80% of tilts. The deficit in adjusting blood pressure after vestibular lesions persisted for only 1 wk, after which time blood pressure remained stable during tilt. These data show that removal of vestibular inputs alters orthostatic responses and are consistent with the hypothesis that vestibular signals are one of several inputs that are integrated to elicit compensatory changes in blood pressure during movement.
The responses to vestibular stimulation of brain stem neurons that regulate sympathetic outflow and blood flow have been studied extensively in decerebrate preparations, but not in conscious animals. In the present study, we compared the responses of neurons in the rostral ventrolateral medulla (RVLM), a principal region of the brain stem involved in the regulation of blood pressure, to whole body rotations of conscious and decerebrate cats. In both preparations, RVLM neurons exhibited similar levels of spontaneous activity (median of ∼17 spikes/s). The firing of about half of the RVLM neurons recorded in decerebrate cats was modulated by rotations; these cells were activated by vertical tilts in a variety of directions, with response characteristics suggesting that their labyrinthine inputs originated in otolith organs. The activity of over one-third of RVLM neurons in decerebrate animals was altered by stimulation of baroreceptors; RVLM units with and without baroreceptor signals had similar responses to rotations. In contrast, only 6% of RVLM neurons studied in conscious cats exhibited cardiac-related activity, and the firing of just 1% of the cells was modulated by rotations. These data suggest that the brain stem circuitry mediating vestibulosympathetic reflexes is highly sensitive to changes in body position in space but that the responses to vestibular stimuli of neurons in the pathway are suppressed by higher brain centers in conscious animals. The findings also raise the possibility that autonomic responses to a variety of inputs, including those from the inner ear, could be gated according to behavioral context and attenuated when they are not necessary.
Recordings were made from the vestibular nuclei of decerebrate cats that had undergone a combined bilateral labyrinthectomy and vestibular neurectomy 49-103 days previously and allowed to recover. Responses of neurons were recorded to tilts in multiple vertical planes at frequencies ranging from 0.05 to 1 Hz and amplitudes up to 15 degrees. Many spontaneously active neurons were present in the vestibular nuclei; the mean firing rate of these cells was 43 +/- 5 (SEM) spikes/s. The spontaneous firing of the neurons was irregular: the coefficient of variation was 0.86 +/- 0.14. The firing of 27% of the neurons was modulated by tilt. The plane of tilt that elicited the maximal response was typically within 25 degrees of pitch. The response gain was approximately 1 spikes/s/degree across stimulus frequencies. The response phase was near stimulus position at low frequencies, and lagged position slightly at higher frequencies (average of 35 +/- 9 degrees at 0.5 Hz). The source of the inputs eliciting modulation of vestibular nucleus activity during tilt in animals lacking vestibular inputs is unknown, but could include receptors in the trunk or limbs. These findings show that activation of vestibular nucleus neurons during vertical rotations is not exclusively the result of labyrinthine inputs, and suggest that limb and trunk inputs may play an important role in graviception and modulating vestibular-elicited reflexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.