Current models for the exceptional preservation of Burgess Shale fossils have focused on either the HFextractable carbonaceous compressions or the mineral films identified by elemental mapping. BSEM, EDX and microprobe analysis of two-dimensionally preserved Marpolia, Wiwaxia and Burgessia identifies the presence of both carbonaceous and aluminosilicate films for most features, irrespective of original lability. In the light of the deep burial and greenschist facies metamorphism documented for the Burgess Shale, the aluminosilicate films are identified as products of late-stage volatilization and coincident mineralization of preexisting compression fossils, whereas the three-dimensionally preserved gut-caecal system of Burgessia is interpreted as an aluminosilicate replacement of a pre-existing carbonate phase. The case for late diagenetic emplacement of aluminosilicate minerals is supported by the extensive aluminosilicification of trilobite shell and (originally) calcareous veinlets in the Burgess Shale, as well as documentation of other secondarily aluminosilicified compression fossils. By distinguishing late diagenetic alteration from the early diagenetic processes responsible for exceptional preservation, it is possible to reconcile the range of preservational modes currently expressed in the Burgess Shale.
Experimental burial of polychaete (Nereis) and crustacean (Crangon) carcasses in kaolinite, calcite, quartz, and montmorillonite demonstrates a marked effect of sediment mineralogy on the stabilization of nonbiomineralized integuments, the first step in producing carbonaceous compression fossils and Burgess Shale-type (BST) preservation. The greatest positive effect was with Nereis buried in kaolinite, and the greatest negative effect was with Nereis buried in montmorillonite, a morphological trend paralleled by levels of preserved protein. Similar but more attenuated effects were observed with Crangon. The complex interplay of original histology and sediment mineralogy controls system pH, oxygen content, and major ion concentrations, all of which are likely to feed back on the preservation potential of particular substrates in particular environments. The particular susceptibility of Nereis to both diagenetically enhanced preservation and diagenetically enhanced decomposition most likely derives from the relative lability of its collagenous cuticle vs. the inherently more recalcitrant cuticle of Crangon. We propose a mechanism of secondary, sediment-induced taphonomic tanning to account for instances of enhanced preservation. In light of the marked effects of sediment mineralogy on fossilization, the Cambrian to Early Ordovician taphonomic window for BST preservation is potentially related to a coincident interval of glauconite-prone seas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.