A large number of insulation/dielectric failures in power systems are related to thermally-induced dielectrical breakdown, also known as 'thermal breakdown', at higher operating temperatures. In this work, the thermal breakdown behavior of typical silicone formulations, used as dielectrics in stretchable electronic devices, is analyzed at practically relevant operating temperatures ranging from 20°C to 80°C. An effective way of delaying the thermal breakdown of insulating materials is to blend micro-or nano-sized inorganic particles with high thermal conductivity, to dissipate better any losses generated during energy transduction. Therefore, two types of commercial silicone formulations, blended with two types of rutile hydrophobic, high-dielectric TiO 2 fillers, are investigated in relation to their dielectric properties, namely, relative permittivity, the dissipation factor, and electrical breakdown strength. The breakdown strengths of these silicone composites are subsequently evaluated using Weibull analysis, which indicates a negative correlation between temperature and shape parameter for all compositions, thus illustrating that the homogeneity of the samples decreases in line with temperature, but the breakdown strengths nevertheless increase initially due to the trapping effect from the high-permittivity fillers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.