Clearance of neutrophils from inflamed sites is critical for resolution of inflammation, but pathogen-driven neutrophil apoptosis can impair host defenses. We previously showed that pyocyanin, a phenazine toxic metabolite produced by Pseudomonas aeruginosa, accelerates neutrophil apoptosis in vitro. We compared wild-type and pyocyanin-deficient strains of P. aeruginosa in a murine model of acute pneumonia. Intratracheal instillation of either strain of P. aeruginosa caused a rapid increase in bronchoalveolar lavage neutrophil counts up to 18 h after infection. In wild-type infection, neutrophil numbers then declined steadily, whereas neutrophil numbers increased up to 48 h in mice infected with pyocyanin-deficient P. aeruginosa. In keeping with these differences, pyocyanin production was associated with reduced bacterial clearance from the lungs. Neutrophil apoptosis was increased in mice infected with wild-type compared with the phenazine-deficient strain or two further strains that lack pyocyanin production, but produce other phenazines. Concentrations of potent neutrophil chemokines (MIP-2, KC) and cytokines (IL-6, IL-1β) were significantly lower in wild-type compared with phenazine-deficient strain-infected mice at 18 h. We conclude that pyocyanin production by P. aeruginosa suppresses the acute inflammatory response by pathogen-driven acceleration of neutrophil apoptosis and by reducing local inflammation, and that this is advantageous for bacterial survival.
Caspase-1, the prototypic caspase, is known to process the cytokines IL-1β and IL-18 to mature forms but it is unclear whether, like other caspases, it can induce apoptosis by activation of downstream protease cascades. Neutrophils are known to express caspase-1, to release IL-1β and to undergo rapid, caspase-dependent apoptosis. We examined apoptosis and IL-1β production in peripheral blood neutrophils of caspase-1-deficient and wild-type mice. Constitutive apoptosis of caspase-1-deficient neutrophils was delayed compared with wild-type neutrophils and LPS-mediated inhibition of apoptosis was absent, but caspase-1-deficient neutrophils were susceptible to Fas-mediated apoptosis. LPS-stimulated IL-1β production was absent from caspase-1-deficient neutrophils. To ascertain whether these differences in apoptosis and IL-1β production would alter the response to acute lung injury, we studied pulmonary neutrophil accumulation following intratracheal administration of LPS. Caspase-1-deficient mice showed increased, predominantly neutrophilic pulmonary inflammation, but inflammation had resolved in both wild-type and deficient animals by 72 h after LPS instillation. IL-1β production was increased in wild-type lungs but was also detected in caspase-1-deficient mice. We conclude that caspase-1 modulates apoptosis of both peripheral blood and inflammatory neutrophils, but is not essential for IL-1β production in the lung.
The regulation of systemic and local neutrophil activation is crucial to the clearance of infections and the successful resolution of inflammation without progress to tissue damage or disseminated inflammatory reactions. Using purified lipopolysaccharide (pLPS) and highly purified neutrophils, we have previously shown that Toll-like receptor 4 signaling is a potent neutrophil activator, but a poor stimulator of survival. In the presence of peripheral blood mononuclear cells (PBMCs), however, pLPS becomes a potent neutrophil survival factor. Interleukin (IL)-1beta has been identified as an important neutrophil activator and prosurvival cytokine, and is produced in abundance by LPS-stimulated PBMCs. We now show that IL-1beta fails to activate highly purified neutrophils or enhance their survival, but in the presence of PBMCs, IL-1beta induces neutrophil survival. We hypothesized that LPS-primed neutrophils might become responsive to IL-1beta, but were unable to demonstrate this. Moreover, IL-1ra failed to prevent pLPS + PBMC-dependent neutrophil survival. In studies of IL-1R1(-/-) mice, we found that LPS was still able to mediate neutrophil survival, and neutrophil survival was enhanced by the addition of monocytic cells. Thus an important paradigm of neutrophil regulation needs to be viewed in the context of a cellular network in which actions of IL-1beta on neutrophils are indirect and mediated by other cells.
These studies demonstrate that P. aeruginosa can manipulate the inflammatory microenvironment through inhibition of apoptotic cell engulfment, and suggest potential strategies to limit pulmonary inflammation in cystic fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.