Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Telomeres are transcribed as long non-coding RNAs called TERRAs (Telomeric repeat containing RNA) that participate in a variety of cellular regulatory functions. High telomerase activity (TA) is associated with endometrial cancer (EC). This study aimed to examine the levels of three TERRAs, transcribed at chromosomes 1q-2q-4q-10q-13q-22q, 16p and 20q in healthy (n = 23) and pathological (n = 24) human endometrium and to examine their association with cellular proliferation, TA and telomere lengths. EC samples demonstrated significantly reduced levels of TERRAs for Chromosome 16p (Ch-16p) (p < 0.002) and Chromosome 20q (Ch-20q) (p = 0.0006), when compared with the postmenopausal samples. No significant correlation was found between TERRA levels and TA but both Ch-16p and Ch-20q TERRA levels negatively correlated with the proliferative marker Ki67 (r = −0.35, p = 0.03 and r = −0.42, p = 0.01 respectively). Evaluation of single telomere length analysis (STELA) at XpYp telomeres demonstrated a significant shortening in EC samples when compared with healthy tissues (p = 0.002). We detected TERRAs in healthy human endometrium and observed altered individual TERRA-specific levels in malignant endometrium. The negative correlation of TERRAs with cellular proliferation along with their significant reduction in EC may suggest a role for TERRAs in carcinogenesis and thus future research should explore TERRAs as potential therapeutic targets in EC.
Endometrial cancer (EC) is the commonest gynaecological malignancy. Current prognostic markers are inadequate to accurately predict patient survival, necessitating novel prognostic markers, to improve treatment strategies. Telomerase has a unique role within the endometrium, whilst aberrant telomerase activity is a hallmark of many cancers. The aim of the current in silico study is to investigate the role of telomere and telomerase associated genes and proteins (TTAGPs) in EC to identify potential prognostic markers and therapeutic targets. Analysis of RNA-seq data from The Cancer Genome Atlas identified differentially expressed genes (DEGs) in EC (568 TTAGPs out of 3467) and ascertained DEGs associated with histological subtypes, higher grade endometrioid tumours and late stage EC. Functional analysis demonstrated that DEGs were predominantly involved in cell cycle regulation, while the survival analysis identified 69 DEGs associated with prognosis. The protein-protein interaction network constructed facilitated the identification of hub genes, enriched transcription factor binding sites and drugs that may target the network. Thus, our in silico methods distinguished many critical genes associated with telomere maintenance that were previously unknown to contribute to EC carcinogenesis and prognosis, including NOP56, WFS1, ANAPC4 and TUBB4A. Probing the prognostic and therapeutic utility of these novel TTAGP markers will form an exciting basis for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.