Deep intracontinental earthquakes are poorly understood, despite their potential to cause significant destruction. Although lower crustal strength is currently a topic of debate, dry lower continental crust may be strong under high-grade conditions. Such strength could enable earthquake slip at high differential stress within a predominantly viscous regime, but requires further documentation in nature. Here, we analyse geological observations of seismic structures in exhumed lower crustal rocks. A granulite facies shear zone network dissects an anorthosite intrusion in Lofoten, northern Norway, and separates relatively undeformed, microcracked blocks of anorthosite. In these blocks, pristine pseudotachylytes decorate fault sets that link adjacent or intersecting shear zones. These fossil seismogenic faults are rarely >15 m in length, yet record single-event displacements of tens of centimetres, a slip/length ratio that implies >1 GPa stress drops. These pseudotachylytes represent direct identification of earthquake nucleation as a transient consequence of ongoing, localised aseismic creep.
Understanding the ability of the lower crust to support transient changes in stresses and strain rates during the earthquake cycle requires a detailed investigation of the deformation mechanisms and rheology of deep crustal fault rocks. Here, we show that lower crustal pseudotachylyte-bearing shear zones are able to accommodate short-term episodes of high strain rate and high stress deformation by accelerated viscous creep, followed by a reduction in stresses to some ambient deformation condition. Quartz microstructure within pseudotachylyte-bearing shear zones in otherwise undeformed granulites from Lofoten, Norway, indicates that dynamic recrystallization occurred during viscous creep under rapid strain rates and high stresses of~10 −9 s −1 and~100 MPa, respectively. Lower stress microstructures (i.e., foam textures) are also recorded in the shear zones, indicating spatial and temporal variations of stress and strain rate during deformation cycles. Both the high and lower stress quartz recrystallization took place under granulite facies conditions of 650°C-750°C and 0.7-0.8 GPa and represented a record of highly localized viscous creep within the lower crust. This implies that lower crustal pseudotachylytes are potentially able to form extremely localized weak zones within strong lower crust, enabling a deep mechanical response to perturbations in stress and strain rate such as those experienced during the seismic cycle, for example, seismogenic loading followed by subsequent postseismic relaxation.Plain Language Summary Detailed investigation of the strength and deformation style of fault rocks sourced from the Earth's lower crust is important to understand how the lower crust reacts to shortterm variations in stress and strain rate, which can occur, for example, between earthquakes. Here, we show that solidified pseudotachylytes (initially melts produced due to frictional heating along the fault plane during an earthquake) occurring at depths of 25-30 km in the lower crust can accommodate deformation at particularly high strain rates and high stresses via solid-state creep. We look at pseudotachylytes formed in lower crustal shear zones that are now exhumed in Lofoten, Norway. Deformation microstructures in quartz within these pseudotachylytes have recorded rapid strain rates and high stresses. These microstructures are occasionally transformed into lower stress versions, indicating that during the deformation the stress and strain rate varied through both time and space. Both stages, however, record the same deformation temperatures and pressures, indicating that these are snapshots of ongoing deformation within the lower crust. We conclude that, when the lower crust is strong, pseudotachylytes will form important weak zones that accommodate deformation even during rapid variations in the deformation conditions, for example, as occurs during the postseismic period immediately after an earthquake.
The anisotropy of magnetic susceptibility (AMS) is widely used to analyze magmatic flow in intrusive igneous bodies including plutons, sills and dikes. This method, owing its success to the rapid nature of measurements, provides a proxy for the orientation of markers with shape anisotropy that flow and align in a viscous medium. AMS specimens typically are 25 mm diameter right cylinders or 20 mm on-aside cubes, representing a volume deemed statistically representative. Here, we present new AMS results, based on significantly smaller cubic specimens, which are 3.5 mm on a side, hence~ 250 times volumetrically smaller than conventional specimens. We show that, in the case of frictional melts, which inherently have an extremely small grain size, this small volume is in most cases sufficient to characterize the pseudotachylyte fabric, particularly when magnetite is present. Further, we demonstrate that the mini-AMS method provides new opportunities to investigate the details of frictional melt flow in these coseismic miniature melt bodies. This new method offers significant potential to investigate frictional melt flow in pseudotachylyte veins including contributions to the lubrication of faults at shallow to moderate depths.
This paper discusses the results of field-based geological investigations of exhumed rocks exposed in the Musgrave Ranges (Central Australia) and in Nusfjord (Lofoten, Norway) that preserve evidence for lower continental crustal earthquakes with focal depths of approximately 25–40 km. These studies have established that deformation of the dry lower continental crust is characterized by a cyclic interplay between viscous creep (mylonitization) and brittle, seismic slip associated with the formation of pseudotachylytes (a solidified melt produced during seismic slip along a fault in silicate rocks). Seismic slip triggers rheological weakening and a transition to viscous creep, which may be already active during the immediate post-seismic deformation along faults initially characterized by frictional melting and wall-rock damage. The cyclical interplay between seismic slip and viscous creep implies transient oscillations in stress and strain rate, which are preserved in the shear zone microstructure. In both localities, the spatial distribution of pseudotachylytes is consistent with a local (deep) source for the transient high stresses required to generate earthquakes in the lower crust. This deep source is the result of localized stress amplification in dry and strong materials generated at the contacts with ductile shear zones, producing multiple generations of pseudotachylyte over geological time. This implies that both the short- and the long-term rheological evolution of the dry lower crust typical of continental interiors is controlled by earthquake cycle deformation. This article is part of a discussion meeting issue ‘Understanding earthquakes using the geological record’.
Surface faulting earthquakes are known to cluster in time from historical and palaeoseismic studies, but the mechanism(s) responsible for clustering, such as fault interaction, strain-storage, and evolving dynamic topography, are poorly quantified, and hence not well understood. We present a quantified replication of observed earthquake clustering in central Italy. Six active normal faults are studied using 36Cl cosmogenic dating, revealing out-of-phase periods of high or low surface slip-rate on neighboring structures that we interpret as earthquake clusters and anticlusters. Our calculations link stress transfer caused by slip averaged over clusters and anti-clusters on coupled fault/shear-zone structures to viscous flow laws. We show that (1) differential stress fluctuates during fault/shear-zone interactions, and (2) these fluctuations are of sufficient magnitude to produce changes in strain-rate on viscous shear zones that explain slip-rate changes on their overlying brittle faults. These results suggest that fault/shear-zone interactions are a plausible explanation for clustering, opening the path towards process-led seismic hazard assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.