Pollinators are being threatened globally by urbanisation and agricultural intensification, driven by a growing human population. Understanding these impacts on landscapes and pollinators is critical to ensuring a robust pollination system. Remote sensing data on land use attributes have previously linked honeybee nutrition to land use in the Western Honeybee (Apis mellifera L.). Here, we instead focus on the less commonly studied Apis cerana japonica—the Japanese Honeybee. Our study presents preliminary data comparing forage (honey and pollen) with land use across a rural-urban gradient from 22 sites in Kyushu, southern Japan. Honey samples were collected from hives between June 2018 and August 2019. Pollen were collected and biotyped from hives in urban and rural locations (n = 4). Previous studies of honey show substantial variation in monosaccharide content. Our analysis of A. cerana japonica honey found very little variation in glucose and fructose (which accounted for 97% of monosaccharides), despite substantial differences in surrounding forage composition. As expected, we observed temporal variation in pollen foraged by A. cerana japonica, likely dependent on flowering phenology. These preliminary results suggest that the forage and nutrition of A. cerana japonica may not be negatively affected by urban land use. This highlights the need for further comparative studies between A. cerana japonica and A. mellifera as it could suggest a resilience in pollinators foraging in their native range.
Pollinators are being threatened globally by urbanisation and agricultural intensification, driv-en by a growing human population. Understanding these impacts on landscapes and pollinators is critical to ensuring a robust pollination system. Remote sensing data on land use attributes have previously linked honeybee nutrition to land use in the Western Honeybee (Apis mellifera L.). Here, we instead focus on the less commonly studied Apis cerana japonica – the Japanese Honeybee. Our study presents preliminary data comparing forage (honey and pollen) with land use across a rural-urban gradient from 22 sites in Kyushu, southern Japan. Honey samples were collected from hives between June 2018 and August 2019. Pollen were collected and biotyped from hives in urban and rural locations (n = 4). Previous studies of honey show substantial vari-ation in monosaccharide content. Our analysis of A. cerana japonica honey found very little varia-tion in glucose and fructose (which accounted for 97% of monosaccharides), despite substantial differences in surrounding forage composition. As expected, we observed temporal variation in pollen foraged by A. cerana japonica, likely dependent on flowering phenology. These prelimi-nary results suggest that the forage and nutrition of A. cerana japonica may not be negatively af-fected by urban land use. This highlights the need for further comparative studies between A. cerana japonica and A. mellifera as it could suggest a resilience in pollinators foraging in their na-tive range.
Pollinators are being threatened globally by urbanisation and agricultural intensification, driven by a growing human population. Honeybees are part of a wide suite of insect pollinators with a global distribution. Understanding the impacts of landscape change and other influencing factors on pollinators is critical to ensuring food security and ecological stability. Remote sensing data on land use attributes have previously linked honeybee nutrition to land use in the Western Honeybee (Apis mellifera L.). Our study presents preliminary data comparing forage (honey and pollen) with land use across a rural-urban gradient from 22 sites in Kyushu, Southern Japan. Honey samples were collected from managed hives between June 2018 and August 2019. Pollen were collected and biotyped from hives in urban and rural locations (n = 5). Previous studies of western honeybee honey shows substantial variation in monosaccharide content. Our analysis of A. cerana japonica honey found very little variation in glucose and fructose (which accounted for 97% of monosaccharides), despite substantial differences in surrounding forage composition. As expected, we observed temporal variation in pollen foraged by A. cerana japonica, likely dependent on flowering phenology. These results suggest that A. cerana japonica may be resilient previously observed negative effects of urban land use on pollinator nutrition. We suggest this effect could be due to differences in urban green infrastructure in Japan, or due to an adaptation by A. cerana japonica to their surroundings, meaning landscape change may not be as detrimental to A. cerana japonica as has been observed elsewhere in the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.