We have observed the very low-mass Class 0 protostar IRAS 15398−3359 at scales ranging from 50 to 1800 au, as part of the Atacama Large Millimeter/Submillimeter Array Large Program FAUST. We uncover a linear feature, visible in H 2 CO, SO, and C 18 O line emission, which extends from the source in a direction almost perpendicular to the known active outflow. Molecular line emission from H 2 CO, SO, SiO, and CH 3 OH further reveals an arc-like structure connected to the outer end of the linear feature and separated from the protostar, IRAS 15398−3359, by 1200 au. The arc-like structure is blueshifted with respect to the systemic velocity. A velocity gradient of 1.2 km s −1 over 1200 au along the linear feature seen in the H 2 CO emission connects the protostar and the arc-like structure
The chemical diversity of low-mass protostellar sources has so far been recognized, and environmental effects are invoked as its origin. In this context, observations of isolated protostellar sources without the influence of nearby objects are of particular importance. Here, we report the chemical and physical structures of the low-mass Class 0 protostellar source IRAS 16544−1604 in the Bok globule CB 68, based on 1.3 mm Atacama Large Millimeter/submillimeter Array observations at a spatial resolution of ∼70 au that were conducted as part of the large program FAUST. Three interstellar saturated complex organic molecules (iCOMs), CH3OH, HCOOCH3, and CH3OCH3, are detected toward the protostar. The rotation temperature and the emitting region size for CH3OH are derived to be 131 ± 11 K and ∼10 au, respectively. The detection of iCOMs in close proximity to the protostar indicates that CB 68 harbors a hot corino. The kinematic structure of the C18O, CH3OH, and OCS lines is explained by an infalling–rotating envelope model, and the protostellar mass and the radius of the centrifugal barrier are estimated to be 0.08–0.30 M
⊙ and <30 au, respectively. The small radius of the centrifugal barrier seems to be related to the small emitting region of iCOMs. In addition, we detect emission lines of c-C3H2 and CCH associated with the protostar, revealing a warm carbon-chain chemistry on a 1000 au scale. We therefore find that the chemical structure of CB 68 is described by a hybrid chemistry. The molecular abundances are discussed in comparison with those in other hot corino sources and reported chemical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.