We have observed the CCH (N = 3−2, J = 7/2−5/2, F = 4−3 and 3−2) and SO (6 7 −5 6 ) emission at a 0. ′′ 2 angular resolution toward the low-mass Class 0 protostellar source IRAS 15398−3359 with ALMA. The CCH emission traces the infalling-rotating envelope near the protostar with the outflow cavity extended along the northeast-southwest axis. On the other hand, the SO emission has a compact distribution around the protostar. The CCH emission is relatively weak at the continuum peak position, while the SO emission has a sharp peak there. Although the maximum velocity shift of the CCH emission is about 1 km s −1 from the systemic velocity, a velocity shift higher than 2 2 km s −1 is seen for the SO emission. This high velocity component is most likely associated with the Keplerian rotation around the protostar. The protostellar mass is estimated to be 0.007 +0.004 −0.003 M ⊙ from the velocity profile of the SO emission. With this protostellar mass, the velocity structure of the CCH emission can be explained by the model of the infalling-rotating envelope, where the radius of the centrifugal barrier is estimated to be 40 au from the comparison with the model. The disk mass evaluated from the dust continuum emission by assuming the dust temperature of 20 K 100 K is 0.1 0.9 times the stellar mass, resulting in the Toomre Q parameter of 0.4 5. Hence, the disk structure may be partly unstable. All these results suggest that a rotationally-supported disk can be formed in the earliest stages of the protostellar evolution.
We have observed the very low-mass Class 0 protostar IRAS 15398−3359 at scales ranging from 50 to 1800 au, as part of the Atacama Large Millimeter/Submillimeter Array Large Program FAUST. We uncover a linear feature, visible in H 2 CO, SO, and C 18 O line emission, which extends from the source in a direction almost perpendicular to the known active outflow. Molecular line emission from H 2 CO, SO, SiO, and CH 3 OH further reveals an arc-like structure connected to the outer end of the linear feature and separated from the protostar, IRAS 15398−3359, by 1200 au. The arc-like structure is blueshifted with respect to the systemic velocity. A velocity gradient of 1.2 km s −1 over 1200 au along the linear feature seen in the H 2 CO emission connects the protostar and the arc-like structure
Unbiased understanding of molecular distributions in a disk/envelope system of a low-mass protostellar source is crucial for investigating physical and chemical evolution processes. We have observed 23 molecular lines toward the Class 0 protostellar source L483 with ALMA and have performed principal component analysis (PCA) for their cube data (PCA-3D) to characterize their distributions and velocity structures in the vicinity of the protostar. The sum of the contributions of the first three components is 63.1%. Most oxygen-bearing complex organic molecule lines have a large correlation with the first principal component (PC1), representing the overall structure of the disk/envelope system around the protostar. Contrary, the C18O and SiO emissions show small and negative correlations with PC1. The NH2CHO lines stand out conspicuously at the second principal component (PC2), revealing more compact distribution. The HNCO lines and the high-excitation line of CH3OH have a similar trend for PC2 to NH2CHO. On the other hand, C18O is well correlated with the third principal component (PC3). Thus, PCA-3D enables us to elucidate the similarities and the differences of the distributions and the velocity structures among molecular lines simultaneously, so that the chemical differentiation between the oxygen-bearing complex organic molecules and the nitrogen-bearing ones is revealed in this source. We have also conducted PCA for the moment 0 maps (PCA-2D) and that for the spectral line profiles (PCA-1D). While they can extract part of characteristics of the molecular line data, PCA-3D is essential for comprehensive understandings. Characteristic features of the molecular line distributions are discussed on NH2CHO.
The chemical diversity of low-mass protostellar sources has so far been recognized, and environmental effects are invoked as its origin. In this context, observations of isolated protostellar sources without the influence of nearby objects are of particular importance. Here, we report the chemical and physical structures of the low-mass Class 0 protostellar source IRAS 16544−1604 in the Bok globule CB 68, based on 1.3 mm Atacama Large Millimeter/submillimeter Array observations at a spatial resolution of ∼70 au that were conducted as part of the large program FAUST. Three interstellar saturated complex organic molecules (iCOMs), CH3OH, HCOOCH3, and CH3OCH3, are detected toward the protostar. The rotation temperature and the emitting region size for CH3OH are derived to be 131 ± 11 K and ∼10 au, respectively. The detection of iCOMs in close proximity to the protostar indicates that CB 68 harbors a hot corino. The kinematic structure of the C18O, CH3OH, and OCS lines is explained by an infalling–rotating envelope model, and the protostellar mass and the radius of the centrifugal barrier are estimated to be 0.08–0.30 M ⊙ and <30 au, respectively. The small radius of the centrifugal barrier seems to be related to the small emitting region of iCOMs. In addition, we detect emission lines of c-C3H2 and CCH associated with the protostar, revealing a warm carbon-chain chemistry on a 1000 au scale. We therefore find that the chemical structure of CB 68 is described by a hybrid chemistry. The molecular abundances are discussed in comparison with those in other hot corino sources and reported chemical models.
Using the Atacama Large Millimeter/submillimeter Array, we have imaged 15 molecular-line emissions and the dust continuum emission around the Class 0 protostellar source IRAS 15398−3359. The outflow structure is mainly traced by the H2CO (K a = 0 and 1), CCH, and CS emissions. These lines also trace the disk/envelope structure around the protostar. The H2CO (K a = 2 and 3), CH3OH, and SO emissions are concentrated toward the protostar, while the DCN emission is more extended around the protostar. We have performed principal component analysis (PCA) for these distributions on two different scales, the outflow and the disk/envelope structure. For the latter case, the molecular-line distributions are classified into two groups, according to the contribution of the second principal component, one having a compact distribution around the protostar and the other showing a rather extended distribution over the envelope. Moreover, the second principal component value tends to increase as an increasing quantum number of H2CO (K a = 0, 1, 2, and 3), reflecting the excitation condition: the distribution is more compact for higher excitation lines. These results indicate that PCA is effective at extracting the characteristic features of the molecular-line distributions around the protostar in an unbiased way. In addition, we identify four blobs in the outflow structure in the H2CO lines, some of which can also be seen in the CH3OH, CS, CCH, and SO emissions. The gas temperature derived from the H2CO lines ranges from 43–63 K, which suggests shocks due to the local impact of the outflow on clumps of the ambient gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.