High Entropy Alloys are a class of alloys which have been shown to largely exhibit stable microstructures, as well as frequently good mechanical properties, particularly when manufactured by additive manufacturing. Due to the large number of potential compositions that their multi-component nature introduces, high throughput alloy development methods are desirable to speed up the investigation of novel alloys. Here, we explore once such method, in-situ alloying during Additive Manufacture, where a powder of a certain pre-alloyed composition is mixed with the required composition of powder of an additional element, such that alloying takes place when powders are melted during the process. To test the effectiveness and capability of the approach, selective laser melting has been used to manufacture pre-alloyed CoCrFeNi, and also CoCrFeNiCu and CoCrFeNiTi alloys by combining pre-alloyed CoCrFeNi powder with elemental powders of Cu and Ti. Processing parameter variations are used to find the highest relative density for each alloy, and samples were then characterised for microstructure and phase composition. The CoCrFeNi alloy shows a single phase face centred cubic (FCC) microstructure, as found with other processing methods. The CoCrFeNiCu alloy has a two phase FCC microstructure with clear partitioning of the Cu, while the CoCrFeNiTi alloy has an FCC matrix phase with NiTi intermetallics and a hexagonal close packed (HCP) phase, as well as unmelted Ti particles. The microstructures therefore differ from those observed in the same alloys manufactured by other methods, mainly due to the presence of areas with higher concentrations than usually encountered of Cu and Ti respectively. Successful in-situ alloying in this process seems to be improved by the added elemental powder having a lower melting point than the base alloy, as well as a low inherent tendency to segregate. While not producing directly comparable microstructures however, the approach does seem to offer advantages for the rapid screening of alloys for AM processability, identifying, for example, extensive solid-state cracking in the CoCrFeNiTi alloy.
Additive Manufacturing (AM) is a revolutionary technology with great interest from the aerospace sector, due to the capability of manufacturing complex geometries and repairing of damaged components. A significant volume of research is being conducted with high-temperature alloys, particularly nickel superalloys. However, the high temperature properties of nickel superalloys are derived from the high fraction of strengthening precipitates, which in turn, lead to poor amenability to additive manufacture. Various cracking modes are common in nickel superalloys, primarily as a result of the high-level of alloying and the extreme thermal conditions experienced in AM. Herein, crack susceptibility calculations from literature were critically analysed and combined, resulting in a simple crack susceptibility index that is in agreement with literature. Currently, the range of alloys which have been tested in AM and reported in literature is limited and lacks a standard methodology, making accurate assessment of printability difficult.Scheil solidification simulations were performed, testing solute trapping and back diffusion models for both the cooling rates associated with laser powder bed fusion (L-PBF) and laser directed energy deposition (L-DED). The results confirm that L-PBF exhibits cooling rates that can result in solute trapping, unlike in L-DED. These differences mean that alloys cannot be developed more generally for AM, but must be developed with a specific AM process in mind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.