The human brain is inherently limited in the information it can make consciously accessible. When people monitor a rapid stream of visual items for two targets, they can typically report the first, but not the second target, if these appear within 200-500 ms of each other, a phenomenon known as the attentional blink (AB). No work has determined the neural basis for the AB, partly because conventional neuroimaging approaches lack the temporal resolution to adequately characterise the neural activity elicited by each item in a rapid stream. Here we introduce a new approach that can identify the precise effect of the AB on behaviour and neural activity. Specifically, we employed a multivariate encoding approach to extract feature-selective information carried by randomly-oriented gratings within a rapid serial stream. We show that feature selectivity is enhanced for correctly reported targets and suppressed when the same items are missed. By contrast, no such effects were apparent for irrelevant distractor items. Our findings point to a new theoretical account that involves both short- and long-range temporal interactions between visual items competing for consciousness.
The human brain is inherently limited in the information it can make consciously accessible. When people monitor a rapid stream of visual items for two targets, they typically fail to see the second target if it occurs within 200-500 ms of the first, a phenomenon called the attentional blink (AB). The neural basis for the AB is poorly understood, partly because conventional neuroimaging techniques cannot resolve visual events displayed close together in time. Here we introduce an approach that characterises the precise effect of the AB on behaviour and neural activity. We employ multivariate encoding analyses to extract featureselective information carried by randomly-oriented gratings. We show that feature selectivity is enhanced for correctly reported targets and suppressed when the same items are missed, whereas irrelevant distractor items are unaffected. The findings suggest that the AB involves both short-and long-range neural interactions between visual representations competing for access to consciousness.
Although many executive function screens have been developed, it is not yet clear whether these assessments are equally effective in detecting post-stroke deficits of initiation and inhibition. This study presents a comparative analysis of the Stroop and Hayling Tests aiming to evaluate whether these tests measure the same underlying cognitive functions and to identify the neural correlates of the deficits detected by both tasks. 66 stroke survivors and 70 healthy ageing controls completed the Hayling and Stroop Tests. Stroke patients were found to exhibit qualitative performance differences across analogous Stroop and Hayling Test metrics intended to tap initiation and inhibition. The Stroop Test was found to have high specificity to abnormal performance, but low sensitivity relative to the Hayling Test. Minimal overlap was present between the network-level correlates of analogous Stroop and Hayling Test metrics. Hayling Task strategy use metrics were significantly associated with distinct patterns of disconnection in stroke survivors, providing novel insight into the neural correlates of fine-grained behavioural patterns. Overall, these findings strongly suggest that the functions tapped by the Stroop and Hayling Test are both behaviourally and anatomically dissociable. The Hayling Test was found to offer improved sensitivity and detail relative to the Stroop Test. This novel demonstration of the Hayling Test within the stroke population suggests that this task represents an effective measure for quantifying post-stroke initiation and inhibition deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.