Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T-cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here we show that dysregulated STAT3, together with a core transcriptional regulatory circuit consisting of BATF3, IRF4, and IKZF1, co-occupies gene enhancers to establish an oncogenic transcription program and maintain the malignant state of ALCL. Critical downstream targets of this network in ALCL cells include the proto-oncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The activity of this auto-regulatory transcription loop is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. These findings provide new insights for understanding how dysregulated signaling pathways hijack cell-type-specific transcriptional machinery to drive tumorigenesis and create therapeutic vulnerabilities in genetically defined tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.