Cellular senescence is a cell surveillance mechanism that arrests the cell cycle in damaged cells. The senescent phenotype can spread from cell to cell through paracrine and juxtacrine signalling, but the dynamics of this process are not well understood. Although senescent cells are important in ageing, wound healing and cancer, it is unclear how the spread of senescence is contained in senescent lesions. In the absence of the immune system, senescence could theoretically spread infinitely from one cell to another, but this contradicts experimental evidence. To investigate this issue, we developed both a minimal mathematical model and a stochastic simulation of senescence spread. Our results suggest that differences in the number of signalling molecules secreted between subtypes of senescent cells can limit the spread of senescence. We found that dynamic, time‐dependent paracrine signalling prevents the uncontrolled spread of senescence, and we demonstrate how model parameters can be determined using Bayesian inference in a proposed experiment.
Here we describe the design of an experimental setup using the IBEX Paul trap to test nonlinear quasi-integrable optics, an accelerator lattice design to create stable high intensity beams. In 2010 Danilov and Nagaitsev found a realisable nonlinear potential which can create integrable optics in an accelerator when embedded in a linear lattice that provides round beams. This concept will be tested in the IOTA ring at Fermilab. It is important to further test this concept over a wide parameter range, preferably in a simplified experimental setup such as IBEX. The IBEX Paul trap is capable of replicating the transverse dynamics of a high intensity accelerator without dispersion or chromaticity.
A tandem linear Paul trap as an ion source K Izawa, H Higaki, H Yamate et al. Abstract. The Intense Beam Experiment (IBEX) is a linear Paul trap designed to replicate the dynamics of intense particle beams in accelerators. Similar to the S-POD apparatus at Hiroshima University, IBEX is a small scale experiment which has been constructed and recently commissioned at the STFC Rutherford Appleton Laboratory in the UK. The aim of the experiment is to support theoretical studies of next-generation high intensity proton and ion accelerators, complementing existing computer simulation approaches. Here we report on the status of commissioning and first results obtained.
In this paper we present the first quantitative measurement of the change in frequency (tune) with intensity of four transverse resonances in a high intensity Gaussian beam. Due to the nonlinear space charge forces present in high intensity beams, particle motion cannot be analytically described. Instead we use the simulator of particle orbit dynamics and the intense beam experiment, two linear Paul traps (LPTs), to replicate the system experimentally. In high intensity beams a coherent resonant response to both space charge and external field driven perturbations is possible, these coherent resonances are excited at a tune that differs by a factor C m from that of the incoherent resonance. By increasing the number of ions stored in the LPT and studying the location of four different resonances we extract provisional values describing the change in tune of the resonance with intensity. These values are then compared to the C m factors for coherent resonances. We find that the C m factors do not accurately predict the location of resonances in high intensity Gaussian beams. Further insight into the experiment was gained through simulation using Warp, a particle-in-cell code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.