Neutron reflection from the important mineral mica at the solid/liquid interface is presented here using a new approach – a very thin mica crystal supported on a silicon substrate. This approach avoids the problems of crystal defects and surface undulations that have hindered previous work. The use of mica as a reflectivity substrate is important as it is a model surface, which is atomically smooth with a high structural charge. In this work the mica/water interface is fully characterized. In particular, a characteristic double critical edge is observed, arising from the higher scattering length densities of the mica and D2O subphase relative to the silicon support. The experimental data are modelled using a combined approach: conventional amplitude summation (matrix method) for the thin layers and reflected intensity summation with attenuation terms for the thick layers of mica and hydrocarbon adhesive. Reflection data from the adsorption of the dichain cationic surfactant didodecyldimethylammonium bromide (DDAB) to the surface of muscovite mica from aqueous solution are also presented. It is found that, at twice the critical micelle concentration, a bilayer of DDAB with a thickness of 24 Å is observed, containing essentially no water. Its partial removal by washing and ion exchange is also presented.
The layering of ionic liquids close to flat, charged interfaces has been identified previously through theoretical and some experimental measurements. Here we present evidence for oscillations in ion density ('layering') in a long chain ionic liquid (1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide) near the interface with mica using two complementary approaches. Neutron reflection at the ionic liquid-mica interface is used to detect structure at a single interface, and surface force balance (SFB) measurements carried out with the same ionic liquid reveal oscillatory density in the liquid confined between two mica sheets. Our findings imply the interfacial structure is not induced by confinement alone. Structural forces between two mica surfaces extend to approximately twice the distance of the density oscillations measured at a single interface and have similar period in both cases.
The layer structure of the dichain alkyl ammonium surfactant, didodecyldimethylammonium bromide (DDAB), adsorbed from water on to silica and mica surfaces has been determined using neutron reflection. Although sometimes considered interchangeable surfaces for study, we present evidence of significant differences in the adsorbed layer structure below the critical micelle concentration. A complete DDAB bilayer was assembled at the water/mica interface at concentrations below the critical micelle concentration (CMC). In contrast it is not until the CMC was reached that the complete bilayer structure formed on the oxidised silicon crystal. Removal of the complete bilayer on both surfaces was attempted by both washing and ion exchange yet the adsorbed structure proved tenacious.
Using specular neutron reflection, the adsorption of sodium and calcium salts of the surfactant bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT or AOT) has been studied at the mica/water interface at concentrations between 0.1 and 2 CMC. The pH dependence of the adsorption was also probed. No evidence of the adsorption of Na(AOT) was found even at the critical micelle concentration (CMC) while the calcium salt was found to adsorb significantly at concentrations of 0.5 CMC and above. This interesting and somewhat unexpected finding demonstrates that counterion identity may be used to tune the adsorption of anionic surfactants on anionic surfaces. At the CMC, three condensed bilayers of Ca(AOT) were adsorbed at pH 7 and 9 and four bilayers adsorbed at pH 4. Multilayering at the CMC of Ca(AOT) on the mica surface is an unusual feature of this surfactant/surface combination. Only single bilayer adsorption has been observed at other surfaces at the CMC. We suggest this arises from the high charge density of mica which must provide an excellent template for the surfactant.
Neutron reflectometry has been used to study the adsorption of the anionic surfactant bis(2-ethylhexyl) sulfosuccinate cesium salt on the anionic surface of mica. Evidence of significant adsorption is reported. The adsorption is reversible and changes little with pH. This unexpected adsorption behavior of an anionic molecule on an anionic surface is discussed in terms of recent models for surfactant adsorption such as cation bridging, where adsorption has been reported with the divalent ion calcium but not previously observed with monovalent ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.