Correct positioning of the division plane is a prerequisite for the generation of daughter cells with a normal chromosome complement. Here, we present a mechanism that coordinates assembly and placement of the FtsZ cytokinetic ring with bipolar localization of the newly duplicated chromosomal origins in Caulobacter. After replication of the polarly located origin region, one copy moves rapidly to the opposite end of the cell in an MreB-dependent manner. A previously uncharacterized essential protein, MipZ, forms a complex with the partitioning protein ParB near the origin of replication and localizes with the duplicated origin regions to the cell poles. MipZ directly interferes with FtsZ polymerization, thereby restricting FtsZ ring formation to midcell, the region of lowest MipZ concentration. The cellular localization of MipZ thus serves the dual function of positioning the FtsZ ring and delaying formation of the cell division apparatus until chromosome segregation has initiated.
Dividing cells must coordinate cell cycle events to ensure genetic stability. Here we identify an essential two-component signal transduction protein that controls multiple events in the Caulobacter cell cycle, including cell division, stalk synthesis, and cell cycle-specific transcription. This protein, CtrA, is homologous to response regulator transcription factors and controls transcription from a group of cell cycle-regulated promoters critical for DNA replication, DNA methylation, and flagellar biogenesis. CtrA activity in the cell cycle is controlled both transcriptionally and by phosphorylation. As purified CtrA binds an essential DNA sequence motif found within its target promoters, we propose that CtrA acts in a phosphorelay signal transduction system to control bacterial cell cycle events directly at the transcriptional level.
The global transcriptional regulator CtrA controls multiple events in the Caulobacter cell cycle, including the initiation of DNA replication, DNA methylation, cell division, and flagellar biogenesis. CtrA is a member of the response regulator family of two component signal transduction systems and is activated by phosphorylation. We report here that this phosphorylation signal enters the cell cycle at mid S phase. In addition, CtrA function is modulated by temporally and spatially controlled proteolysis. When an active CtrA protein is present at the wrong time in the cell cycle, owing to expression of a mutant CtrA derivative that is active in the absence of phosphorylation and is not turned over during the cell cycle, the G1-to-S transition is blocked and the cell cycle aborts. Thus, both phosphorylation and proteolysis are critical determinants of bacterial cell cycle control in a manner that is analogous to the control of the eukaryotic cell cycle.
Aminoacyl-transfer RNA (tRNA) synthetases, which catalyze the attachment of the correct amino acid to its corresponding tRNA during translation of the genetic code, are proven antimicrobial drug targets. We show that the broad-spectrum antifungal 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), in development for the treatment of onychomycosis, inhibits yeast cytoplasmic leucyl-tRNA synthetase by formation of a stable tRNA(Leu)-AN2690 adduct in the editing site of the enzyme. Adduct formation is mediated through the boron atom of AN2690 and the 2'- and 3'-oxygen atoms of tRNA's3'-terminal adenosine. The trapping of enzyme-bound tRNA(Leu) in the editing site prevents catalytic turnover, thus inhibiting synthesis of leucyl-tRNA(Leu) and consequentially blocking protein synthesis. This result establishes the editing site as a bona fide target for aminoacyl-tRNA synthetase inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.