This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
<p class="paragraph">Soils are a key natural capital asset. Soil health, defined as the capacity of a soil to function as a living system, is a vital component of wider ecosystem processes and functioning, including the flow of multiple ecosystem services.&#160;Land use change is an important factor influencing declines in soil health globally. To meet demand for low carbon energy, ground-mounted solar parks (SPs) have expanded rapidly in recent decades, incurring significant land use change, with predictions that UK solar capacity could quadruple by 2050. There is potential for both positive and negative impacts of SPs on soil health - SPs present a relatively unique land use change, in that large areas of land remain physically undisturbed but are shaded by panels. This shading can alter microclimate metrics under panels, including air and soil temperature, soil moisture, photosynthetically active radiation and humidity, which may impact indicators of soil health. Further, the majority of SPs in the UK are developed on former agricultural land, often intensively managed. Arable land use is one of the most detrimental to overall soil health, whilst there is significant evidence supporting the benefits of taking agricultural land out of cultivation, including increased soil carbon, reduced erosion, compaction, and pollution. Considering the land use requirements and microclimatic variation within SPs, it is critical that their impacts on soil health are understood, yet research on solar park-soil impacts remains sparse.</p> <p class="paragraph">We investigated the impact of location within SPs (under solar panels and in gap areas) and the influence of prior land use (arable and grassland) on physical, chemical, and biological indicators of soil health, to address this knowledge gap and provide one of the first quantifications on the impacts of SP development on soil health.&#160;&#160;Preliminary results suggest no difference in indicators with SP prior land use, however bulk density and inorganic phosphorus were significantly lower in gap areas compared to under panels, whilst organic matter and microbial biomass carbon were higher in gap areas. These results suggest that soil health may be degraded under the shade of solar panels.</p> <p class="paragraph">However, on-site management decisions such as livestock grazing, wildflower planting and mowing regimes likely influence soil health indicator values and vary across SPs. Further, the SPs studied have been operational since 2014, a relatively short time in terms of soil health. As such, further research is required across spatial and temporal scales, considering the impact of SP management actions to accurately infer SP impacts on soil health.</p>
<p>The energy sector is the largest contributor to global greenhouse gas emissions. Therefore it is imperative that we take steps to de-carbonise energy supplies if we are to meet the 2&#176;C goal of the Paris Agreement. &#160;Of the existing renewable energy technologies, Photovoltaic (PV) capacity has seen exponential growth in the past decade, with 508.1 GW of PV currently installed globally and predictions that it will become the dominant renewable energy source by 2050. A large proportion of this capacity is deployed as ground-mounted solar parks. Despite the rapid growth of solar parks, little research has been conducted into the ecosystem impacts. Here we use a systematic literature review of the available evidence to show that the main ecosystem impacts of solar parks can be grouped into five themes: microclimate, land-use change, soil and vegetation, wildlife impacts and pollution. Impacts can be positive or negative, and vary according to site location, former land use and management practices throughout the construction, operational and decommissioning phases of the solar park life cycle. The most widely reported impacts associated with the construction phase were habitat loss and fragmentation, with subsequent effects on fauna, flora, and soil. Commonly reported operational impacts included changes to local microclimate, pollution, mortality of wildlife and disturbance due to site maintenance. Decommissioning impacts depended largely on the site management objectives; sites continued to be managed to deliver ecosystem service co-benefits or returned to their original state prior to construction. The review also revealed significant knowledge gaps. Understanding the ecosystem impacts of solar parks is pivotal, both for informing site management that maximises ecosystem co-benefits and avoids detrimental impacts, and for quantifying the potential ecosystem costs and gains as required by policy, for example the upcoming mandatory biodiversity net gain requirement for UK planning applications.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.