The impact of introduced predators is a major factor limiting survivorship and recruitment of many native Australian species. In particular, the feral cat and red fox have been implicated in range reductions and population declines of many conservation dependent species across Australia, including ground-nesting birds and small to medium-sized mammals. The impact of predation by feral cats since their introduction some 200 years ago has altered the structure of native fauna communities and led to the development of landscape-scale threat abatement via baiting programs with the feral cat bait, Eradicat. Demonstrating the effectiveness of broad-scale programs is essential for managers to fine tune delivery and timing of baiting. Efficacy of feral cat baiting at the Fortescue Marsh in the Pilbara, Western Australia was tested using camera traps and occupancy models. There was a significant decrease in probability of site occupancy in baited sites in each of the five years of this study, demonstrating both the effectiveness of aerial baiting for landscape-scale removal of feral cats, and the validity of camera trap monitoring techniques for detecting changes in feral cat occupancy during a five-year baiting program.
ContextFeral cat predation has had a significant impact on native Australian fauna in the past 200 years. In the early 2000s, population monitoring of the western ground parrot showed a dramatic decline from the pre-2000 range, with one of three meta-populations declining to very low levels and a second becoming locally extinct. We review 8 years of integrated introduced predator control, which trialled the incorporation of the feral cat bait Eradicat® into existing fox baiting programs. AimsTo test the efficacy of integrating feral cat control into an existing introduced predator control program in an adaptive management framework conducted in response to the decline of native species. The objective was to protect the remaining western ground parrot populations and other threatened fauna on the south coast of Western Australia. MethodsA landscape-scale feral cat and fox baiting program was delivered across south coast reserves that were occupied by western ground parrots in the early 2000s. Up to 500000ha of national parks and natures reserves were baited per annum. Monitoring was established to evaluate both the efficacy of landscape-scale baiting in management of feral cat populations, and the response of several native fauna species, including the western ground parrot, to an integrated introduced predator control program. Key resultsOn average, 28% of radio-collared feral cats died from Eradicat® baiting each year, over a 5-year period. The results varied from 0% to 62% between years. Changes in site occupancy by feral cats, as measured by detection on camera traps, was also variable, with significant declines detected after baiting in some years and sites. Trends in populations of native fauna, including the western ground parrot and chuditch, showed positive responses to integrated control of foxes and cats. ImplicationsLandscape-scale baiting of feral cats in ecosystems on the south coast of Western Australia had varying success when measured by direct knockdown of cats and site occupancy as determined by camera trapping; however, native species appeared to respond favourably to integrated predator control. For the protection of native species, we recommend ongoing baiting for both foxes and feral cats, complemented by post-bait trapping of feral cats. We advocate monitoring baiting efficacy in a well designed adaptive management framework to deliver long-term recovery of threatened species that have been impacted by cats.
Historically, the brush-tailed rock-wallaby (Petrogale penicillata), occurred throughout the Great Dividing Range from southern Queensland to western Victoria. Within Victoria, this extensive range has now contracted to a single remnant population in the Little River Gorge in East Gippsland, and the species is classified as ‘Critically Endangered’. Here we summarise the key results from 10 years of monitoring and management of the Little River Gorge population. The count of individuals detected biannually rose from one in 2000 to 12 in 2008, but this increase was at least partially due to variation in monitoring methodology. Apparent mortality rate in the first year of life was 69%, suggesting that predation was the strongest extrinsic factor limiting the population. Fecundity rate among fertile females was estimated at 1.14 births per annum. Rainfall did not significantly predict birth rate, juvenile mortality or sex ratio. Comparison of three monitoring techniques (cage traps, remote camera surveillance and genetic analysis of scats) revealed that each detected a different subset of the population in this study. These techniques should be considered complementary, rather than substitutable, in future monitoring of small Petrogale populations.
Simple Summary: The management of invasive species is a major challenge for the conservation of biodiversity globally. One technique that has been widely used to control feral cats (Felis catus) and red foxes (Vulpes vulpes) in Western Australia is the aerial broadcast of toxic baits, but assessing its efficacy can be difficult. Here, we report on a method of evaluating the effectiveness of this method for the abatement of feral cats using genetic analysis techniques. However, our results were unable to provide robust evidence that, over a five-year program, baiting had a detrimental impact on both genetics and demography in this population, and the results were not significant. Monitoring the impact of control programs in this way may provide valuable information to managers on the effectiveness of their management strategy, but further refinement of the methodology is recommended. Abstract:The feral cat has been implicated in the decline and extinction of many species worldwide and a range of strategies have been devised for its control. A five-year control program using the aerial broadcast of toxic Eradicat ® baits was undertaken at Fortescue Marsh in the Pilbara region of north-western Australia, for the protection of biodiversity in this important wetland area. This program has been shown to have had a significant detrimental effect on cats in this landscape, but the long-term impact is difficult to ascertain. We assessed population genetics across three cohorts of feral cats sampled as part of the control program. We also compared cat populations in natural habitats and around human infrastructure. A key challenge in any study of wild animal populations is small sample sizes and feral cats are particularly difficult to capture and sample. The results of this study superficially appear to suggest promising trends but were limited by sample size and many were not statistically significant. We find that the use of genetic techniques to monitor the impact of invasive species control programs is potentially useful, but ensuring adequate sample sizes over a long enough time-frame will be critical to the success of such studies.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. Florida Entomological Society is collaborating with JSTOR to digitize, preserve and extend access to The Florida Entomologist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.