Newcastle disease (ND) is a serious disease of poultry that causes significant economic losses. Despite rampant ND outbreaks that occur annually in Kenya, the information about the NDV circulating in Kenya is still scarce. We report the first countrywide study of NDV in Kenya. Our study is aimed at evaluating the genetic characteristics of Newcastle disease viruses obtained from backyard poultry in farms and live bird markets in different regions of Kenya. We sequenced and analyzed fusion (F) protein gene, including the cleavage site, of the obtained viruses. We aligned and compared study sequences with representative NDV of different genotypes from GenBank. The fusion protein cleavage site of all the study sequences had the motif 112RRQKRFV118 indicating their velogenic nature. Phylogenetic analysis revealed that the NDV from various sites in Kenya was highly similar genetically and that it clustered together with NDV of genotype V. The study samples were 96% similar to previous Ugandan and Kenyan viruses grouped in subgenotype Vd This study points to possible circulation of NDV of similar genetic characteristics between backyard poultry farms and live bird markets in Kenya. The study also suggests the possible spread of velogenic NDV between Kenya and Uganda possibly through cross-border live bird trade. Our study provides baseline information on the genetic characteristics of NDV circulating in the Kenyan poultry population. This highlights the need for the ND control programmes to place more stringent measures on cross-border trade of live bird markets and poultry products to prevent the introduction of new strains of NDV that would otherwise be more difficult to control.
Background Malaria vector control has been implemented chiefly through indoor interventions targeting primary vectors resulting in population declines—pointing to a possible greater proportional contribution to transmission by secondary malaria vectors with their predominant exophagic and exophilic traits. With a historical focus on primary vectors, there is paucity of data on secondary malaria vectors in many countries in Africa. This study sought to determine the species compositions and bionomic traits, including proportions infected with Plasmodium falciparum and phenotypic insecticide resistance, of secondary vectors in three sites with high malaria transmission in Kisumu County, western Kenya. Methods Cross-sectional sampling of adult Anopheles was conducted using indoor and outdoor CDC light traps (CDC-LT) and animal-baited traps (ABTs) in Kakola-Ombaka and Kisian, while larvae were sampled in Ahero. Secondary vectors captured were exposed to permethrin using WHO bioassays and then analyzed by ELISA to test for proportions infected with P. falciparum sporozoites. All Anopheles were identified to species using morphological keys with a subset being molecularly identified using ITS2 and CO1 sequencing for species identification. Results Two morphologically identified secondary vectors captured—An. coustani and An. pharoensis—were determined to consist of four species molecularly. These included An. christyi, An. sp. 15 BSL-2014, an unidentified member of the An. coustani complex (An. cf. coustani) and a species similar to that of An. pharoensis and An. squamosus (An. cf. pharoensis). Standardized (Anopheles per trap per night) capture rates demonstrate higher proportions of secondary vectors across most trapping methods—with overall indoor and outdoor CDC-LTs and ABT captures composed of 52.2% (n = 93), 78.9% (n = 221) and 58.1% (n = 573) secondary vectors respectively. Secondary vectors were primarily caught outdoors. The overall proportion of secondary vectors with P. falciparum sporozoite was 0.63% (n = 5), with the unidentified species An. cf. pharoensis, determined to carry Plasmodium. Overall secondary vectors were susceptible to permethrin with a > 99% mortality rate. Conclusions Given their high densities, endophily equivalent to primary vectors, higher exophily and Plasmodium-positive proportions, secondary vectors may contribute substantially to malaria transmission. Unidentified species demonstrate the need for further morphological and molecular identification studies towards further characterization. Continued monitoring is essential for understanding their temporal contributions to transmission, the possible elevation of some to primary vectors and the development of insecticide resistance. Graphic Abstract
Theileria is a genus of tick-borne protozoan that is globally widespread and infects nearly all ungulates in which they cause either latent infection or lethal disease. Wild animals are considered reservoir hosts of many species of Theileria and their diversity in wildlife species is increasingly becoming of interest. The molecular characterization and identification of Theileria infecting wildlife has been studied in a few species including buffalo, which are considered reservoir host for Theileria parva infecting cattle. In this study, we sequenced Theileria species infecting wildebeest (Connochaetes taurinus) and used molecular-genetic and phylogenetic analysis of the 18 Small Subunit of the Ribosomal RNA (18S rRNA) to identify their relationships with known species of Theileria. Our results revealed three new Theileria haplotypes infecting wildebeest. Phylogenetic analysis revealed that haplotype 1 and 2 clustered in the same clade as Theileria separata and with Theileria sp. isolated from other small to medium sized antelopes. Haplotype 3 clustered close to the Theileria ovis clade. This is the first molecular description and characterization of Theileria species infecting blue wildebeest in East Africa. This study demonstrates the potential for Theileria transmission between wildebeest and small domestic ungulates, such as sheep and goats.
Mosquitoes play a predominant role as leading agents in the spread of vector-borne diseases and consequent mortality in humans. Despite reports on increase of new and recurrent mosquito borne-disease outbreaks such as chikungunya, dengue fever and Rift valley fever in Kenya little is known about the genetic characteristics and diversity of the vector species that have been incriminated in transmission of disease pathogens. In this study, we identified mosquito species across Kisumu, Kilifi and Nairobi Counties and determined their genetic diversity and phylogenetic relationships. PCR was used to amplify and sequence the partial cytochrome oxidase subunit 1 (CO1) gene of mosquito samples. Molecular-genetic and phylogenetic analysis of the partial cytochrome oxidase subunit 1 (CO1) gene was employed to identify their relationships with known mosquito species. Fourteen (14) haplotypes belonging to genus Aedes, nine (9) haplotypes belonging to genus Anopheles and twelve (12) haplotypes belonging to genus Culex were identified in this study. Findings from this study revealed a potentially new haplotype belonging to Anopheles genus and reported the first molecular characterization of Aedes cummnisii in Kenya. Sequence results revealed variation in mosquito species from Kilifi, Kisumu and Nairobi. Since vector competence varies greatly across species and species-complexes and is strongly associated with specific behavioural adaptations, proper species identification is important for vector control programs.
Mosquitoes play a predominant role as leading agents in the spread of vector-borne diseases and the consequent mortality in humans. Despite reports on increase of new and recurrent mosquito borne-disease outbreaks such as chikungunya, dengue fever and Rift Valley fever in Kenya, little is known about the genetic characteristics and diversity of the vector species that have been incriminated in transmission of disease pathogens. In this study, mosquito species were collected from Kisumu city, Kilifi town and Nairobi city and we determined their genetic diversity and phylogenetic relationships. PCR was used to amplify the partial cytochrome oxidase subunit 1 (CO1) gene of mosquito samples. Molecular-genetic and phylogenetic analysis of the partial cytochrome oxidase subunit 1 (CO1) gene were employed to identify their relationship with known mosquito species. Fourteen (14) haplotypes belonging to genus Aedes, nine (9) haplotypes belonging to genus Anopheles and twelve (12) haplotypes belonging to genus Culex were identified in this study. Findings from this study revealed a potentially new haplotype belonging to Anopheles genus and reported the first molecular characterization of Aedes cumminsii in Kenya. Sequence results revealed variation in mosquito species from Kilifi, Kisumu and Nairobi. Since vector competence varies greatly across species as well as species-complexes and is strongly associated with specific behavioural adaptations, proper species identification is important for vector control programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.