In recent years, the functions of glial cells, namely, astrocytes and microglia, have gained prominence in several diseases of the central nervous system, especially in glioblastoma (GB), the most malignant primary brain tumor that leads to poor clinical outcomes. Studies showed that microglial cells or astrocytes play a critical role in promoting GB growth. Based on the recent findings, the complex network of the interaction between microglial/astrocytes cells and GB may constitute a potential therapeutic target to overcome tumor malignancy. In the present review, we summarize the most important mechanisms and functions of the molecular factors involved in the microglia or astrocytes–GB interactions, which is particularly the alterations that occur in the cell’s extracellular matrix and the cytoskeleton. We overview the cytokines, chemokines, neurotrophic, morphogenic, metabolic factors, and non-coding RNAs actions crucial to these interactions. We have also discussed the most recent studies regarding the mechanisms of transportation and communication between microglial/astrocytes – GB cells, namely through the ABC transporters or by extracellular vesicles. Lastly, we highlight the therapeutic challenges and improvements regarding the crosstalk between these glial cells and GB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.