Recently, the use of repellents for preventing the transmission of mosquito-borne diseases is getting increasingly more attention. However, most of the current repellents are volatile in nature and must be frequently re-applied as their efficacy is only limited to a short period of time. Therefore, a slow release and abrasion-resistant mechanism is needed for prolonging the protection time of the repellents. The focus of this study is on the direct micro-encapsulation of repellents from an emulsion and integration of already encapsulated repellents into nanofibres via electrospinning. Different repellents were electrospun in polyvinyl alcohol (PVA) nanofibrous structures, namely
p
-menthane-3,8-diol micro-capsules, permethrin, chilli and catnip oil. The repellents were successfully incorporated in the nanofibres and the tensile properties of the resulting samples did not have a significant change. This means that the newly created textiles were identical to current PVA nanofibrous textiles with the added benefit of being mosquito repellent. Principally, all incorporated repellents in the nanofibrous structures showed a significantly reduced number of mosquito landings compared to the control. Consequently, the currently described method resulted in a new and very effective repelling textile material that can be used in the prevention against mosquito-associated diseases.
Purpose
This paper aims to determine the best conventional degumming technique for use by rural farmers practicing Eri silk fiber production in Kenya.
Design/methodology/approach
Three conventional silk degumming methods (water, soap and alkali) were analyzed under the factors, namely, time, pressure and degumming media, following the multilevel factorial design of experiments. The effect of variables on degumming weight loss was determined. The effects of the conventional degumming methods that produced complete sericin removal on chemical structure, surface morphology, thermal properties, crystallinity and fiber strength on Eri silk fibers produced in Kenya were then determined. The optimal degumming condition was then evaluated.
Findings
Soap and water degumming led to incomplete sericin removal. Alkali degumming media had the most effect, especially when pressure cooked at 103 kPa. Increasing time during alkali degumming beyond 30 min did not to have any major difference on degumming loss (at p 0.05). There were no major changes in chemical and thermal properties after degumming. However, the tensile strength and elongation deteriorated especially on alkali medium. Decreasing degumming time in alkali medium from 120 min to 30 min reduced the strength loss from 45% to 33%. Optimal degumming was found to be in an alkali media at 103 kPa for 30 min.
Originality/value
There is very little information available on Eri silk fibers produced in Kenya. Results of this study provide an optimized conventional degumming procedure suitable for small scale farmers in rural areas practicing Eri silk fiber production.
Global trends are shifting towards environmental friendly materials and manufacturing methods. Therefore, natural fiber applications are gaining traction globally. Silk, a natural protein fiber is one of the textile fibers that have recently received more attention due to the new frontiers brought about by technological advancement that has expanded the use of silk fiber beyond the conventional textile industry. The simple and versatile nature of silk fibroin process-ability has made silk appealing in wide range of applications. Silk is biocompatible, biodegradable, easy to functionalize and has excellent mechanical properties, in addition to optical transparency. This review chapter explores the use of silk in biomedical applications and healthcare textiles. Future trends in silk applications are also highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.