Control of adhesion is a crucial aspect in the design of microelectromechanical and nanoelectromechanical devices. To understand the dependence of adhesion on nanometer-scale surface roughness, a roughness gradient has been employed. Monomodal roughness gradients were fabricated by means of silica nanoparticles (diameter ∼12 nm) to produce substrates with varying nanoparticle density. Pull-off force measurements on the gradients were performed using (polyethylene) colloidal-probe microscopy under perfluorodecalin, in order to restrict interactions to van der Waals forces. The influence of normal load on pull-off forces was studied and the measured forces compared with existing Hamaker-approximation-based models. We observe that adhesion force reaches a minimum value at an optimum particle density on the gradient sample, where the mean particle spacing becomes comparable with the diameter of the contact area with the polyethylene sphere. We also observe that the effect on adhesion of increasing the normal load depends on the roughness of the surface.
This article reports real-time observations and detailed modeling of the transient response of thin aqueous films bounded by a deformable surface to external mechanical and electrical perturbations. Such films, tens to hundreds of nanometers thick, are confined between a molecularly smooth mica plate and a deformable mercury/electrolyte interface on a protuberant drop at a sealed capillary tube. When the mercury is negatively charged, the water forms a wetting film on mica, stabilized by electrical double layer forces. Mechanical perturbations are produced by driving the mica plate toward or by retracting the mica plate from the mercury surface. Electrical perturbations are applied to change the electrical double layer interaction between the mica and the mercury by imposing a step change of the bias voltage between the mercury and the bulk electrolyte. A theoretical model has been developed that can account for these observations quantitatively. Comparison between experiments and theory indicates that a no-slip hydrodynamic boundary condition holds at the molecularly smooth mica/electrolyte surface and at the deformable mercury/electrolyte interface. An analysis of the transient response based on the model elucidates the complex interplay between disjoining pressure, hydrodynamic forces, and surface deformations. This study also provides insight into the mechanism and process of droplet coalescence and reveals a novel, counterintuitive mechanism that can lead to film instability and collapse when an attempt is made to thicken the film by pulling the bounding mercury and mica phases apart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.