In this paper, the MFC sensor and actuators are applied to suppress circular plate vibrations. It is assumed that the system to be regulated is unknown. The mathematical model of the plate was obtained on the base of registration of a system response on a fixed excitation. For the estimation of the system's behaviour the ARX identification method was used to derive the linear model in the form of a transfer function of the order nine. The obtained model is then used to develop the linear feedback control algorithm for the cancellation of vibration by using the MFC star-shaped actuator (SIMO system). The MFC elements location is dealt with in this study with the use of a laser scanning vibrometer. The control schemes presented have the ability to compute the control effort and to apply it to the actuator within one sampling period. This control scheme is then illustrated through some numerical examples with simulations modelling the designed controller. The paper also describes the experimental results of the designed control system. Finally, the results obtained for the considered plate show that in the chosen frequency limit the designed structure of a closed-loop system with MFC elements provides a substantial vibration suppression.
In this paper, the adaptive control based on symbolic solution of Diophantine equation is used to suppress circular plate vibrations. It is assumed that the system to be regulated is unknown. The plate is excited by a uniform force over the bottom surface generated by a loudspeaker. The axially-symmetrical vibrations of the plate are measured by the application of the strain sensors located along the plate radius, and two centrally placed piezoceramic discs are used to cancel the plate vibrations. The adaptive control scheme presented in this work has the ability to calculate the error sensor signals, to compute the control effort and to apply it to the actuator within one sampling period. For precise identification of system model the regularized RLS algorithm has been applied. Self-tuning controller of RST type, derived for the assumed system model of the 4th order is used to suppress the plate vibration. Some numerical examples illustrating the improvement gained by incorporating adaptive control are demonstrated.
Abstract-The paper presents a concise report on the comparison of the classifiers k-NN and SVM in the case of a fuzzy classification of the arterio-venous fistula based on audio recordings. What has been used in the studies are the acoustic signals taken from both healthy patients as well as those diagnosed with the narrowing of a fistula in a mild and major degree of stenosis. In the publication there have been selected two features, each presenting one-time and frequency domain, which enable a quite clear depiction of the classification result. The aim of the study is to develop a solution enabling the detection of fistula's pathologies at an early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.