Vertical stratification of avian communities has been studied in both temperate and tropical forests; however, the majority of studies used ground‐based methods. In this study we used ground‐to‐canopy mist nets to collect detailed data on vertical bird distribution in primary rain forest in Wanang Conservation Area in Papua New Guinea (Madang Province). In total 850 birds from 86 species were caught. Bird abundance was highest in the canopy followed by the understory and lowest in the midstory. Overall bird diversity increased towards the canopy zone. Insectivorous birds represented the most abundant and species‐rich trophic guild and their abundances decreased from the ground to canopy. The highest diversity of frugivorous and omnivorous birds was confined to higher vertical strata. Insectivorous birds did not show any pattern of diversity along the vertical gradient. Further, insectivores preferred strata with thick vegetation, while abundance and diversity of frugivores increased with decreasing foliage density. Our ground‐to‐canopy (0–27 m) mist netting, when compared to standard ground mist netting (0–3 m), greatly improved bird diversity assessment and revealed interesting patterns of avian community stratification along vertical forest strata.
Tropical mountains harbor exceptional concentrations of Earth’s biodiversity. In topographically complex landscapes, montane species typically inhabit multiple mountainous regions, but are absent in intervening lowland environments. Here we report a comparative analysis of genome-wide DNA polymorphism data for population pairs from eighteen Indo-Pacific bird species from the Moluccan islands of Buru and Seram and from across the island of New Guinea. We test how barrier strength and relative elevational distribution predict population differentiation, rates of historical gene flow, and changes in effective population sizes through time. We find population differentiation to be consistently and positively correlated with barrier strength and a species’ altitudinal floor. Additionally, we find that Pleistocene climate oscillations have had a dramatic influence on the demographics of all species but were most pronounced in regions of smaller geographic area. Surprisingly, even the most divergent taxon pairs at the highest elevations experience gene flow across barriers, implying that dispersal between montane regions is important for the formation of montane assemblages.
Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian-haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host-parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host-parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian-haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three-dimensional spatial analyses of avian-haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community-level infections are primarily driven by host community composition.
Papua New Guinean forests (PNG), sequestering up to 3% of global forest carbon, are a focus of climate change mitigation initiatives, yet few field-based studies have quantified forest biomass and carbon for lowland PNG forest. We provide an estimate for the 10 770 ha Wanang Conservation Area (WCA) to investigate the effect of calculation methodology and choice of allometric equation on estimates of above-ground live biomass (AGLB) and carbon. We estimated AGLB and carbon from 43 nested plots at the WCA. Our biomass estimate of 292.2 Mg AGLB ha À1 (95% CI 233.4-350.6) and carbon at 137.3 Mg C ha À1 (95% CI 109.8-164.8) is higher than most estimates for PNG but lower than mean global estimates for tropical forest. Calculation method and choice of allometric model do not significantly influence mean biomass estimates; however, the most recently calibrated allometric equation generates estimates 13% higher for lower 95% confidence intervals of mean biomass than previous allometric modelsa value often used as a conservative estimate of biomass. Although large trees at WCA (>70 cm diameter at breast height) accounted for 1/5 total biomass, their density was lower than that seen in SE Asian and Australia forests. Lower density of large trees accounts for lower AGLB than in neighbouring forestsas large trees contribute disproportionately to forest biomass. Reduced frequency of larger trees at WCA is explained by the lack of diversity of large dipterocarp species common to neighbouring SE Asian forests and, potentially, higher rates of local disturbance dynamics. PNG is susceptible to the El Niño Southern Oscillation (ENSO) extreme drought events to which large trees are particularly sensitive and, with still over 20% carbon in large trees, differential mortality under increasing ENSO drought stress raises the risk of PNG forest switching from carbon sink to source with reduced long-term carbon storage capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.