The detailed mechanisms determining the course of congestive heart failure (CHF) in hypertensive subjects with associated renal dysfunction remain unclear. In Ren-2 transgenic rats (TGR), a model of angiotensin II (ANG II)-dependent hypertension, CHF was induced by volume overload achieved by creation of the aorto-caval fistula (ACF). In these rats we investigated the putative pathophysiological contribution of epoxyeicosatrienoic acids (EETs) and compared it with the role of the renin-angiotensin system (RAS). We found that untreated ACF TGR exhibited marked intrarenal and myocardial deficiency of EETs and impairment of renal function. Chronic treatment of these rats with cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/L in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs, markedly improved survival rate, and increased renal blood flow, glomerular filtration rate and fractional sodium excretion, without altering RAS activity. Chronic angiotensin-converting enzyme inhibition (ACEi) with trandolapril, (6 mg/L in drinking water) improved survival rate even more, and also inhibited the development of renal dysfunction; these beneficial actions were associated with significant suppression of the vasoconstrictor/sodium retaining axis and further activation of the vasodilatory/natriuretic axis of the systemic and intrarenal RAS, without modifying tissue availability of biologically active fatty acid epoxides. In conclusion, these findings strongly suggest that chronic sEH inhibition and chronic treatment with ACEi, each of them altering a different vasoactive system, delay or even prevent the onset of decompensation of CHF in ACF TGR, probably by preventing the development of renal dysfunction.
Abstract-Previous studies have shown that whereas the nonclipped kidney in two-kidney, one clip (2K1C) rats undergoes marked depletion of renin content and renin mRNA, intrarenal angiotensin II (Ang II) levels are not suppressed; however, the distribution and functional consequences of intrarenal Ang II remain unclear. The present study was performed to assess the plasma, kidney, and proximal tubular fluid levels of Ang II and the renal responses to intrarenal Ang II blockade in the nonclipped kidneys of rats clipped for 3 weeks. The Ang II concentrations in proximal tubular fluid averaged 9.19Ϯ1.06 pmol/mL, whereas plasma Ang II levels averaged 483Ϯ55 fmol/mL and kidney Ang II content averaged 650Ϯ66 fmol/g. Thus, as found in kidneys from normal rats with normal renin levels, proximal tubular fluid concentrations of Ang II are in the nanomolar range. To avoid the confounding effects of decreases in mean arterial pressure (MAP), we administered the nonsurmountable AT 1 receptor antagonist candesartan directly into the renal artery of nonclipped kidneys (nϭ10). The dose of candesartan (0.5 g) did not significantly decrease MAP in 2K1C rats (152Ϯ3 versus 148Ϯ3 mm Hg), but effectively prevented the renal vasoconstriction elicited by an intra-arterial bolus of Ang II (2 ng). Candesartan elicited significant increases in glomerular filtration rate (GFR) (0.65Ϯ0.06 to 0.83Ϯ0.11 mL ⅐ min Ϫ1 ⅐ g Ϫ1) and renal blood flow (6.3Ϯ0.7 to 7.3Ϯ0.9 mL ⅐ min Ϫ1 ⅐ g Ϫ1 ), and proportionately greater increases in absolute sodium excretion (0.23Ϯ0.07 to 1.13Ϯ0.34 mol ⅐ min Ϫ1 ⅐ g Ϫ1 ) and fractional sodium excretion (0.38Ϯ0.1% to 1.22Ϯ0.35%) in 2K1C hypertensive rats. These results show that proximal tubular fluid concentrations of Ang II are in the nanomolar range and are much higher than can be explained on the basis of plasma levels. Further, the data show that the intratubular levels of Ang II in the nonclipped kidneys of 2K1C rats remain at levels found in kidneys with normal renin content and could be exerting effects to suppress renal hemodynamic and glomerular function and to enhance tubular reabsorption rate. (Hypertension. 1999;33:102-107.) Key Words: renin-angiotensin system Ⅲ hypertension, renal Ⅲ angiotensin antagonist Ⅲ receptors, angiotensin Ⅲ glomerular filtration rate Ⅲ renal blood flow P revious studies have shown the pivotal role of the renin-angiotensin system (RAS) in the development and maintenance of two-kidney, one clip (2K1C) hypertension.
1. Hypertension plays a critical role in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD), but it has also been postulated that antihypertensive drugs that block the renin-angiotensin system (RAS) show class-specific renoprotective actions beyond their blood pressure (BP)-lowering effects. 2. Because this notion has recently been questioned, in the present study we compared the effects of a RAS-dependent antihypertensive therapy (a combination of trandolapril, an angiotensin-converting enzyme inhibitor (ACEI) and losartan, an angiotensin-II (AngII) receptor subtype 1A receptor antagonist) with a 'RAS-independent' antihypertensive therapy (a combination of labetalol, an alfa- and beta-adrenoreceptor antagonist with the diuretics, hydrochlorothiazide and furosemide) on the progression of CKD after 5/6 renal ablation (5/6 NX) in Ren-2 renin transgenic rats (TGR), a model of AngII-dependent hypertension. Normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats after 5/6 NX served as controls. 3. RAS-dependent and -independent antihypertensive therapies normalized BP and survival rate, and prevented the development of cardiac hypertrophy and glomerulosclerosis to the same degree in 5/6 NX HanSD rats and in 5/6 NX TGR. The present findings show that renoprotection, at least in rats after 5/6 NX, is predominantly BP-dependent. When equal lowering of BP was achieved, leading to normotension, cardio- and renoprotective effects were equivalent irrespective of the type of antihypertensive therapy. 4. These findings should be taken into consideration in attempts to develop new therapeutic approaches and strategies aimed to prevent the progression of CKD and to lower the incidence of ESRD.
In the present study, we examined the effects of soluble epoxide hydrolase (sEH) inhibition on the development of angiotensin II-dependent hypertension and on renal function in transgenic rats with inducible expression of the mouse renin gene (strain name Cyp1a1-Ren-2). Hypertension was induced in these rats by indole-3-carbinol (I3C; 0.3% in the diet) for 12 days. The sEH inhibitor cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB) was given in two doses (13 or 26 mg l-1) in drinking water. Blood pressure (BP), body weight (BW) and renal excretory parameters were monitored in conscious animals during the experiment. Renal haemodynamics was assessed at the end of treatment in anaesthetized rats. I3C administration resulted in severe hypertension with a rise in systolic BP from 118 ± 2 to 202 ± 3 mmHg, a loss of BW from 266 ± 5 to 228 ± 4 g and a rise in proteinuria from 14 ± 2 to 34 ± 3 mg day-1. Both doses of c-AUCB significantly attenuated the development of hypertension (systolic BP of 181 ± 4 and 176 ± 4 mmHg, respectively), the loss in BW (256 ± 4 and 259 ± 3 g, respectively) and the degree of proteinuria (27 ± 2 and 25 ± 3 mg day-1, respectively) to a similar extent. Moreover, c-AUCB prevented the reduction in renal plasma flow (5.4 ± 0.4 vs. 4.6 ± 0.3 ml min-1 g-1) and significantly increased sodium excretion (0.84 ± 0.16 vs. 0.38 ± 0.08 μmol min-1 g-1) during I3C administration. These data suggest that the oral administration of c-AUCB displays antihypertensive effects in Ren-2 transgenic rats with inducible malignant hypertension via an improvement of renal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.