The long-term cellular response to DNA damage is controlled by the tumor suppressor p53. It results in cellcycle arrest followed by DNA repair and, depending on the degree of damage inflicted, premature senescence or apoptotic cell death. Here we show that in normal diploid fibroblasts the ubiquitin ligase anaphase-promoting complex or cyclosome (APC/C)-Cdh1 becomes prematurely activated in G2 as part of the sustained long-term but not the rapid short-term response to genotoxic stress and results in the degradation of numerous APC/C substrates. Using HCT116 somatic knockout cells we show that mechanistically premature APC/C activation depends on p53 and its transcriptional target p21 that mediates the signal through downregulation of the APC/C inhibitor Emi1. Cdc14B is dispensable in this setting but might function redundantly. Our data suggest an unexpected role for the APC/C in executing a part of the p53-dependent DNA damage response that leads to premature senescence.
Passage through the restriction point late in G 1 normally commits cells to replicate their DNA. Here we show that the previously reported cell cycle block mediated by the human cytomegalovirus (HCMV) immediate early 2 (IE2) protein uncouples this association. First, IE2 expression leads to elevated levels of cyclin E-associated kinase activity via transcriptional activation of the cyclin E gene. This contributes to post-restriction point characteristics of IE2-expressing cells. Then these cells fail to undergo substantial DNA replication although they have entered S phase, and the induction of DNA replication observed after overexpression of cyclin E or D can be antagonized by IE2 without impinging on cyclin-associated kinase activities. These data suggest that IE2 secures restrictionpoint transition of cells before it stops them from replicating their genome. Our results ®t well with HCMV physiology and support the view that IE2 is part of a viral activity which, on the one hand, promotes cell cycle-dependent expression of cellular replication factors but, on the other hand, disallows competitive cellular DNA synthesis.
The onset of human cytomegalovirus (HCMV) lytic infection is strictly synchronized with the host cell cycle. Infected G0/G1 cells support viral immediate early (IE) gene expression and proceed to the G1/S boundary where they finally arrest. In contrast, S/G2 cells can be infected but effectively block IE gene expression and this inhibition is not relieved until host cells have divided and reentered G1. During latent infection IE gene expression is also inhibited, and for reactivation to occur this block to IE gene expression must be overcome. It is only poorly understood which viral and/or cellular activities maintain the block to cell cycle or latency-associated viral IE gene repression and whether the two mechanisms may be linked. Here, we show that the block to IE gene expression during S and G2 phase can be overcome by both genotoxic stress and chemical inhibitors of cellular DNA replication, pointing to the involvement of checkpoint-dependent signaling pathways in controlling IE gene repression. Checkpoint-dependent rescue of IE expression strictly requires p53 and in the absence of checkpoint activation is mimicked by proteasomal inhibition in a p53 dependent manner. Requirement for the cyclin dependent kinase (CDK) inhibitor p21 downstream of p53 suggests a pivotal role for CDKs in controlling IE gene repression in S/G2 and treatment of S/G2 cells with the CDK inhibitor roscovitine alleviates IE repression independently of p53. Importantly, CDK inhibiton also overcomes the block to IE expression during quiescent infection of NTera2 (NT2) cells. Thus, a timely block to CDK activity not only secures phase specificity of the cell cycle dependent HCMV IE gene expression program, but in addition plays a hitherto unrecognized role in preventing the establishment of a latent-like state.
To allow DNA replication only once per cell cycle, origins of replication are reactivated ('licensed') during each G1 phase. Licensing is facilitated by assembly of the pre-replicative complex (pre-RC) at origins that concludes with loading the mini-chromosome maintenance (MCM) complex onto chromatin. Here we show that a virus exploits pre-RC assembly to selectively inhibit cellular DNA replication. Infection of quiescent primary fibroblasts with human cytomegalovirus (HCMV) induces all pre-RC factors. Although this is sufficient to assemble the MCM-loading factors onto chromatin, as it is in serum-stimulated cells, the virus inhibits loading of the MCM complex itself, thereby prematurely abrogating replication licensing. This provides a new level of control in pre-RC assembly and a mechanistic rationale for the unusual HCMV-induced G1 arrest that occurs despite the activation of the cyclin E-dependent transcription programme. Thus, this particularly large virus might thereby secure the supply with essential replication factors but omit competitive cellular DNA replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.