Nowadays, more-and-more cyber-security training is emerging as an essential process for the lifelong personnel education in organizations, especially for those which operate critical infrastructures. This is due to security breaches on popular services that become publicly known and raise people’s security awareness. Except from large organizations, small-to-medium enterprises and individuals need to keep their knowledge on the related topics up-to-date as a means to protect their business operation or to obtain professional skills. Therefore, the potential target-group may range from simple users, who require basic knowledge on the current threat landscape and how to operate the related defense mechanisms, to security experts, who require hands-on experience in responding to security incidents. This high diversity makes training and certification quite a challenging task. This study combines pedagogical practices and cyber-security modelling in an attempt to support dynamically adaptive training procedures. The training programme is initially tailored to the trainee’s needs, promoting the continuous adaptation to his/her performance afterwards. As the trainee accomplishes the basic evaluation tasks, the assessment starts involving more advanced features that demand a higher level of understanding. The overall method is integrated in a modern cyber-ranges platform, and a pilot training programme for smart shipping employees is presented.
Cloud computing systems offer an attractive alternative to traditional IT-systems, because of economic benefits that arise from the cloud's scalable and flexible IT-resources. The benefits are of particular interest for SME's. The reason is that using Cloud Resources allows an SME to focus on its core business rather than on IT-resources. However, numerous concerns about the security of cloud computing services exist. Potential cloud customers have to be confident that the cloud services they acquire are secure for them to use. Therefore, they have to have a clear set of security requirements covering their security needs. Eliciting these requirements is a difficult task, because of the amount of stakeholders and technical components to consider in a cloud environment. Therefore, the authors propose a structured, pattern-based method supporting eliciting security requirements and selecting security measures. The method guides potential cloud customers to model the application of their business case in a cloud computing context using a pattern-based approach. Thus, a potential cloud customer can instantiate our so-called Cloud System Analysis Pattern. Then, the information of the instantiated pattern can be used to fill-out our textual security requirements patterns and individual defined security requirement patterns, as well. The presented method is tool-supported. Our tool supports the instantiation of the cloud system analysis pattern and automatically transfers the information from the instance to the security requirements patterns. In addition, they have validation conditions that check e.g., if a security requirement refers to at least one element in the cloud. The authors illustrate their method using an online-banking system as running example.
Security and privacy concerns are essential in cloud computing scenarios, because cloud customers and end customers have to trust the cloud provider with their critical business data and even their IT infrastructure. In projects these are often addressed late in the software development life-cycle, because these are difficult to elicit in cloud scenarios, due to the large amount of stakeholders and technologies involved. We contribute a catalog of security and privacy requirement patterns that support software engineers in eliciting these requirements. As requirements patterns provide artifacts for re-using requirements. This paper shows how these requirements can be classified according to cloud security and privacy goals. Furthermore, we provide a structured method on how to elicit the right requirements for a given scenario. We mined these requirements patterns from existing security analysis of public organizations such as ENISA and the Cloud Security Alliance, from our practical experience in the cloud domain, and from our previous research in cloud security. We validate our requirements patterns in co-operation with industrial partners of the ClouDAT project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.