It has recently been hypothesized that hepatocyte CHO metabolites (hexose-or triose-phosphates) might not only stimulate ChREBP and activate DNL, but might also serve as a signal to enhance HGP (17,18). This hypothesis derives in part from the counterintuitive observation that while ChREBP is known to stimulate glycolysis through transactivation of glycolytic genes (22), it may also transactivate expression of G6pc encoding the enzyme er, from skeletal muscle and adipose tissue enhances hepatic DNL (20). Additionally, siRNA-mediated knockdown of ChREBP in ob/ob mice decreases hepatic DNL in the setting of persistent hyperinsulinemia (21). Thus, hepatic DNL may be regulated by increased substrate delivery independently of insulin signaling. However, whether increasing intrahepatic CHO metabolites might also signal to increase glucose production has not been fully explored.
ObjectiveIncreased fructose consumption is a contributor to the burgeoning epidemic of non-alcoholic fatty liver disease (NAFLD). Recent evidence indicates that the metabolic hormone FGF21 is regulated by fructose consumption in humans and rodents and may play a functional role in this nutritional context. Here, we sought to define the mechanism by which fructose ingestion regulates FGF21 and determine whether FGF21 contributes to an adaptive metabolic response to fructose consumption.MethodsWe tested the role of the transcription factor carbohydrate responsive-element binding protein (ChREBP) in fructose-mediated regulation of FGF21 using ChREBP knockout mice. Using FGF21 knockout mice, we investigated whether FGF21 has a metabolic function in the context of fructose consumption. Additionally, we tested whether a ChREBP-FGF21 interaction is likely conserved in human subjects.ResultsHepatic expression of ChREBP-β and Fgf21 acutely increased 2-fold and 3-fold, respectively, following fructose gavage, and this was accompanied by increased circulating FGF21. The acute increase in circulating FGF21 following fructose gavage was absent in ChREBP knockout mice. Induction of ChREBP-β and its glycolytic, fructolytic, and lipogenic gene targets were attenuated in FGF21 knockout mice fed high-fructose diets, and this was accompanied by a 50% reduction in de novo lipogenesis a, 30% reduction VLDL secretion, and a 25% reduction in liver fat compared to fructose-fed controls. In human subjects, serum FGF21 correlates with de novo lipogenic rates measured by stable isotopic tracers (R = 0.55, P = 0.04) consistent with conservation of a ChREBP-FGF21 interaction. After 8 weeks of high-fructose diet, livers from FGF21 knockout mice demonstrate atrophy and fibrosis accompanied by molecular markers of inflammation and stellate cell activation; whereas, this did not occur in controls.ConclusionsIn summary, ChREBP and FGF21 constitute a signaling axis likely conserved in humans that mediates an essential adaptive response to fructose ingestion that may participate in the pathogenesis of NAFLD and liver fibrosis.
Chronic inflammation and fibrosis can result from inappropriately activated immune responses that are mediated by macrophages. Macrophages can acquire memory-like characteristics in response to antigen exposure. Here, we show the effect of BCG or low-dose LPS stimulation on macrophage phenotype, cytokine production, chromatin and metabolic modifications. Low-dose LPS training alleviates fibrosis and inflammation in a mouse model of systemic sclerosis (SSc), whereas BCG-training exacerbates disease in this model. Adoptive transfer of low-dose LPS-trained or BCG-trained macrophages also has beneficial or harmful effects, respectively. Furthermore, coculture with low-dose LPS trained macrophages reduces the fibro-inflammatory profile of fibroblasts from mice and patients with SSc, indicating that trained immunity might be a phenomenon that can be targeted to treat SSc and other autoimmune and inflammatory fibrotic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.