Advancing crop genomics requires efficient genetic systems enabled by high-quality personalized genome assemblies. Here, we introduce RagTag, a toolset for automating assembly scaffolding and patching, and we establish chromosome-scale reference genomes for the widely used tomato genotype M82 along with Sweet-100, a new rapid-cycling genotype that we developed to accelerate functional genomics and genome editing in tomato. This work outlines strategies to rapidly expand genetic systems and genomic resources in other plant species.
Advancing crop genomics requires efficient genetic systems enabled by high-quality personalized genome assemblies. Here, we introduce RagTag, a toolset for automating assembly scaffolding and patching, and we establish chromosome-scale reference genomes for the widely used tomato genotype M82 along with Sweet-100, a rapid-cycling genotype that we developed to accelerate functional genomics and genome editing. This work outlines strategies to rapidly expand genetic systems and genomic resources in other plant species.
The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes which can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this paper, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions in Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin synthase1) which is highly expressed in maturing pea seeds and which encodes a protein previously shown to correspond to an active β-amyrin synthase. The first allele is a nonsense mutation, while the second mutation is located in a splice site and gives rise to a mis-spliced transcript encoding a truncated, non-functional protein. The homozygous mutant seeds accumulated virtually no saponin without affecting seed nutritional or physiological quality. Interestingly, BAS1 appears to control saponin accumulation in all other tissues of the plant examined. These lines represent a first step in the development of pea varieties lacking bitterness off-flavours in their seeds. Our work also shows that TILLING populations in different genetic backgrounds represent valuable genetic resources for both crop improvement and functional genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.