Ultrasensitive impedimetric lectin biosensors recognising different glycan entities on serum glycoproteins were constructed. Lectins were immobilised on novel mixed self-assembled monolayer containing 11-mercaptoundecanoic acid for covalent immobilisation of lectins and betaine terminated thiol to resist non-specific interactions. Construction of biosensors based on Concanavalin A (Con A), Sambucus nigra agglutinin type I (SNA) and Ricinus communis agglutinin (RCA) on polycrystalline gold electrodes was optimised and characterised with a battery of tools including electrochemical impedance spectroscopy, various electrochemical techniques, QCM, FTIR spectroscopy, AFM, XPS and compared with a protein/lectin microarray. The lectin biosensors were able to detect glycoproteins from 1 fM (Con A), 10 fM (RCA) or 100 fM (SNA) with a linear range spanning 6 (SNA), 7 (RCA) or 8 (Con A) orders of magnitude. Furthermore, a detection limit for the Con A biosensor down to 1 aM was achieved in a sandwich configuration. A non-specific binding of proteins for the Con A biosensor was only 6.1% (probed with an oxidised invertase) of the signal towards its analyte invertase and a negligible non-specific interaction of the Con A biosensor was observed in diluted human sera (1000x), as well. The performance of the lectin biosensors was finally tested by glycoprofiling of human serum samples from healthy individuals and those having rheumatoid arthritis, which resulted in distinct glycan pattern between these two groups.
In this Minireview the most advanced patterning protocols and transducing schemes for development of ultrasensitive label-free and label-based lectin biosensors for glycoprofiling of disease markers and some cancerous cells are described. Performance of such lectin biosensors with interfacial properties tuned at a nanoscale are critically compared to the most sensitive immunoassay format of analysis and challenges ahead in the field are discussed. Moreover, key elements for future advances of such devices on the way to enhance robustness and practical applicability of lectin biosensors are revealed.
Systemic sclerosis (SSc) is an autoimmune disease seriously affecting patient´s quality of life. The heterogeneity of the disease also means that identification and subsequent validation of biomarkers of the disease is quite challenging. A fully validated single biomarker for diagnosis, prognosis, disease activity and assessment of response to therapy is not yet available. The main aim of this study was to apply an alternative assay protocol to the immunoassay-based analysis of this disease by employment of sialic acid recognizing lectin Sambucus nigra agglutinin (SNA) to glycoprofile serum samples. To our best knowledge this is the first study describing direct lectin-based glycoprofiling of serum SSc samples. Three different analytical methods for glycoprofiling of serum samples relying on application of lectins are compared here from a bioanalytical point of view including traditional ELISA-like lectin-based method (ELLA), novel fluorescent lectin microarrays and ultrasensitive impedimetric lectin biosensors. Results obtained by all three bioanalytical methods consistently showed differences in the level of sialic acid present on glycoproteins, when serum from healthy people was compared to the one from patients having SSc. Thus, analysis of sialic acid content in human serum could be of a diagnostic value for future detection of SSc, but further work is needed to enhance selectivity of assays for example by glycoprofiling of a fraction of human serum enriched in antibodies for individual diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.