Weak metal-arene interactions have been investigated in Zn, Cd, Hg, and Ni complexes of meso-tetraaryl m- and p-benziporphyrin (1 and 2) and of the new compound, m-benziporphodimethene (3). Compounds 1-3 incorporate the phenylene moiety into a macrocyclic structure so as to facilitate the interaction between the arene and coordinated metal ion. X-ray studies performed on Cd(II) and Ni(II) complexes show that the arene fragment approaches the ion at a distance much shorter than the sum of van der Waals radii. In chloronickel(II) m-benziporphyrin, a weak agostic bond is actually formed. In the NMR spectra of the Cd(II) and Hg(II) species, unusual (1)H-M and (13)C-M scalar couplings have been observed that are transmitted directly between the metal and the arene. DFT calculations performed for two Cd(II) species and subsequent AIM analysis show that the accumulation of electron density between the metal and arene necessary to induce these couplings is fairly small and the interaction is steric in nature. In the paramagnetic Ni(II) complexes of 1 and 3, the agostic proton of the m-phenylene exhibits large downfield (1)H NMR shifts (386 and 208 ppm at 298 K, respectively). An agostic mechanism of spin density transfer is proposed to explain these shifts as resulting from electron donation from the CH bond to the metal. In chloronickel(II) p-benziporphyrin, the inner protons of the p-phenylene have a contrastingly small shift (0.0 ppm at 298 K), indicating that in this case the agostic interaction is inefficient, in agreement with the X-ray data.
Dual identity: It takes a single phenylene twist to reveal the dichotomous nature of a di‐para‐benzihexaphyrin (see picture; phenylene rings highlighted in red). This expanded porphyrinoid switches between Hückel and Möbius topologies in an unusual solvent‐ and temperature‐dependent equilibrium. Each of the two incarnations of the macrocycle has its own unmistakable spectral signature.
5,10,15,20-Tetraaryl-21-vacataporphyrin (butadieneporphyrin, an annulene-porphyrin hybrid) which contains a vacant space instead of heteroatomic bridge acts as a ligand toward palladium(II). The metal ion of square-planar coordination geometry is firmly held via three pyrrolic nitrogen atoms where the fourth coordination place is occupied by a monodentate ligand or by an annulene part of vacataporphyrin. The macrocycle reveals the unique structural flexibility triggered by coordination of palladium. The structural rearrangements engage the C(20)C(1)C(2)C(3)C(4)C(5) annulene fragment which serves as a linker between two pyrrolic rings of vacataporphyrin albeit the significant ruffling of the tripyrrolic block is also of importance. Two fundamental modes of interactions between the palladium ion and annulene moiety have been recognized. The first one resembles an eta(2)-type interaction and involves the C(2)C(3) unit of the butadiene part. Alternatively the profound conformational adjustments allowed an in-plane coordination through the deprotonated trigonally hybridized C(2) center of butadiene. The coordinated vacataporphyrin acquires Hückel or extremely rare Möbius topologies readily reflected by spectroscopic properties. The palladium vacataporphyrin complexes reveal Hückel aromaticity or Möbius antiaromaticity of [18]annulene applying the butadiene fragment of vacataporphyrin as a topology selector. The properties of specific conformers were determined using (1)H NMR and density functional theory calculations.
The incorporation of a phenanthrene moiety into a porphyrin framework results in the formation of a hybrid macrocycle—phenanthriporphyrin—merging the structural features of polycyclic aromatic hydrocarbons and porphyrins. An antiaromatic aceneporphyrinoid, adopting the trianionic {CCNN} core, is suitable for the incorporation of a phosphorus(V) center to form a hypervalent organophosphorus(V) derivative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.