Background: In the photodynamic therapy (PDT), the photosensitizer absorbs light and transfers the energy of the excited state to the oxygen in the cell environment producing reactive oxygen species (ROS), that in its turn, may cause cell damage. In the photothermal therapy (PTT), light also is responsible for activating the photothermal agent, which converts the absorbed energy in heat. Graphene oxide is a carbon-based material that presents photothermal activity. Its physical properties allow the association with the photosensitizer methylene blue and consequently the production of ROS when submitted to light irradiation. Therefore, the association between nanographene oxide and methylene blue could represent a strategy to enhance therapeutic actions. In this work, we report the nanographene oxide-methylene blue platform (NanoGO-MB) used to promote tumor ablation in combination with photodynamic and photothermal therapies against a syngeneic orthotopic murine breast cancer model. Results:In vitro, NanoGO-MB presented 50% of the reactive oxygen species production compared to the free MB after LED light irradiation, and a temperature increase of ~ 40 °C followed by laser irradiation. On cells, the ROS production by the nanoplatform displayed higher values in tumor than normal cells. In vivo assays demonstrated a synergistic effect obtained by the combined PDT/PTT therapies using NanoGO-MB, which promoted complete tumor ablation in 5/5 animals. Up to 30 days after the last treatment, there was no tumor regrowth compared with only PDT or PTT groups, which displayed tumoral bioluminescence 63-fold higher than the combined treatment group. Histological studies confirmed that the combined therapies were able to prevent tumor regrowth and liver, lung and spleen metastasis. In addition, low systemic toxicity was observed in pathologic examinations of liver, spleen, lungs, and kidneys. Conclusions:The treatment with combined PDT/PTT therapies using NanoGO-MB induced more toxicity on breast carcinoma cells than on normal cells. In vivo, the combined therapies promoted complete tumor ablation and metastasis prevention while only PDT or PTT were unable to stop tumor development. The results show the potential of NanoGO-MB in combination with the phototherapies in the treatment of the breast cancer and metastasis prevention.
Background Cancer constitutes group of diseases responsible for the second largest cause of global death, and it is currently considered one of the main public health concerns nowadays. Early diagnosis associated with the best choice of therapeutic strategy, is essential to achieve success in cancer treatment. In women, breast cancer is the second most common type, whereas ovarian cancer has the highest lethality when compared to other neoplasms of the female genital system. The present work, therefore, proposes the association of methylene blue with citrate-coated maghemite nanoparticles (MAGCIT–MB) as a nanocomplex for the treatment of breast and ovarian cancer. Results In vitro studies showed that T-47D and A2780 cancer cell lines underwent a significant reduction in cell viability after treatment with MAGCIT–MB, an event not observed in non-tumor (HNTMC and HUVEC) cells and MDA-MB-231, a triple-negative breast cancer cell line. Flow cytometry experiments suggest that the main mechanism of endocytosis involved in the interiorization of MAGCIT–MB is the clathrin pathway, whereas both late apoptosis and necrosis are the main types of cell death caused by the nanocomplex. Scanning electron microscopy and light microscopy reveal significant changes in the cell morphology. Quantification of reactive oxygen species confirmed the MAGCIT–MB cytotoxic mechanism and its importance for the treatment of tumor cells. The lower cytotoxicity of individual solution of maghemite nanoparticles with citrate (MAGCIT) and free methylene blue (MB) shows that their association in the nanocomplex is responsible for its enhanced therapeutic potential in the treatment of breast and ovarian cancer in vitro. Conclusions Treatment with MAGCIT–MB induces the death of cancer cells but not normal cells. These results highlight the importance of the maghemite core for drug delivery and for increasing methylene blue activity, aiming at the treatment of breast and ovarian cancer. Graphic Abstract
Melanoma is the most aggressive skin carcinoma and nanotechnology can bring new options for its pharmacological treatment. Nanostructured lipid carriers (NLC) are ideal drug-delivery carriers for hydrophobic drugs, such as the antineoplastic docetaxel (DTX), and hybrid (NLC-in-hydrogel) systems are suitable for topical application. This work describes a formulation of NLCDTX in xanthan-chitosan hydrogel containing lidocaine (LDC) with anticancer and analgesia effects. The optimized nanoparticles encapsulated 96% DTX and rheological analysis revealed inherent viscoelastic properties of the hydrogel. In vitro assays over murine fibroblasts (NIH/3T3) and melanoma cells (B16-F10), human keratinocytes (HaCaT) and melanoma cells (SK-MEL-103) showed reduction of docetaxel cytotoxicity after encapsulation in NLCDTX and HGel-NLCDTX. Addition of LDC to the hybrid system (HGel-NLCDTX-LDC) increased cell death in tumor and normal cells. In vivo tests on C57BL/6J mice with B16-F10-induced melanoma indicated that LDC, NLCDTX, HGel-NLCDTX-LDC and NLCDTX + HGel-LDC significantly inhibited tumor growth while microPET/SPECT/CT data suggest better prognosis with the hybrid treatment. No adverse effects were observed in cell survival, weight/feed-consumption or serum biochemical markers (ALT, AST, creatinine, urea) of animals treated with NLCDTX or the hybrid system. These results confirm the adjuvant antitumor effect of lidocaine and endorse HGel-NLCDTX-LDC as a promising formulation for the topical treatment of melanoma.
The most frequently used local anesthetics (LA) by the infiltrative route have an ionizable amine in the range of pH 7.6-8.9. Effective anesthesia of inflamed tissues is a great challenge,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.