We propose the signature scheme Hawk, a concrete instantiation of proposals to use the Lattice Isomorphism Problem (LIP) as a foundation for cryptography that focuses on simplicity. This simplicity stems from LIP, which allows the use of lattices such as Z n , leading to signature algorithms with no floats, no rejection sampling, and compact precomputed distributions. Such design features are desirable for constrained devices, and when computing signatures inside FHE or MPC. The most significant change from recent LIP proposals is the use of module lattices, reusing algorithms and ideas from NTRUSign and Falcon. Its simplicity makes Hawk competitive. We provide cryptanalysis with experimental evidence for the design of Hawk and implement two parameter sets, Hawk-512 and Hawk-1024. Signing using Hawk-512 and Hawk-1024 is four times faster than Falcon on x86 architectures, produces signatures that are about 15% more compact, and is slightly more secure against forgeries by lattice reduction attacks. When floating-points are unavailable, Hawk signs 15 times faster than Falcon. We provide a worst case to average case reduction for module LIP. For certain parametrisations of Hawk this applies to secret key recovery and we reduce signature forgery in the random oracle model to a new problem called the one more short vector problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.