Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme responsible for the methylation of nicotinamide (NAM) using cofactor S-adenosylmethionine (SAM). NNMT overexpression has been linked to diabetes, obesity, and a variety of cancers. Successful development of potent and selective NNMT inhibitors could further reveal the role of NNMT in various diseases, potentially enabling new treatments for metabolic disorders and several cancers. In this work, structure-based rational design led to the development of potent and selective alkynyl bisubstrate inhibitors of NNMT. The reported nicotinamide-SAM conjugate (named NS1) features an alkyne as a key design element that closely mimics the linear, 180°transition state geometry found in the NNMT-catalyzed SAM → NAM methyl transfer reaction. NS1 was synthesized as a single enantiomer and diastereomer in 14 steps and found to be a high-affinity, subnanomolar NNMTinhibitor. An X-ray co-crystal structure and structure-activity relationship (SAR) study revealed the unique ability of an alkynyl linker to span the methyl transfer tunnel of NNMT with ideal shape complementarity.
<div> <div> <div> <div> <p>In this work, structure-based rational design led to the development of potent and selective alkynyl bisubstrate inhibitors of NNMT. The reported nicotinamide-SAM conjugate (named <b>NS1</b>) features an alkyne as a key design element that closely mimics the linear, 180° transition state geometry found in the NNMT-catalyzed SAM → NAM (nicotinamide) methyl transfer reaction. NS1 was synthesized as a single enantiomer and diastereomer in 14 steps and found to be a high-affinity, subnanomolar NNMT inhibitor. An X-ray co-crystal structure and structure-activity relationship (SAR) study revealed the unique ability of an alkynyl linker to span the methyl transfer tunnel of NNMT with ideal shape complementarity. The compounds reported in this work represent the most potent and selective NNMT inhibitors reported to date. The rational design principle described herein could potentially be extended to other methyltransferase enzymes. </p> </div> </div> </div> </div>
The complete carbon framework of the macrocyclic marine natural product amphidinolide F has been prepared by a convergent synthetic route in which three fragments of similar size and complexity have been coupled. Key features of the syntheses of the fragments include the stereoselective construction of the tetrahydrofuran in the C1–C9 fragment by oxonium ylide (free or metal-bound) formation and rearrangement triggered by the direct generation of a rhodium carbenoid from 1-sulfonyl-1,2,3-triazole, the highly diastereoselective aldol reaction between a boron enolate and an aldehyde with 1,4-control to prepare the C10–C17 fragment, and the formation of the tetrahydrofuran in the C18–C29 fragment by intramolecular nucleophilic ring opening of an epoxide with a hydroxyl group under acidic conditions.
Exploration of an ambitious new strategy for the total synthesis of the cytotoxic marine natural product amphidinolide F is described, which features fabrication of the core structure from four readily accessible fragments and macrocycle construction through C9–C10 bond formation by intramolecular Stille coupling between an alkenyl iodide and alkenyl stannane. Efficient stereoselective synthesis of each of the four building-blocks and subsequent coupling of them to produce the requisite cyclization precursor has been accomplished, but suitable conditions for high-yielding palladium-mediated closure of the macrocycle to produce the fully protected amphidinolide F ring system have yet to be identified.
<div> <div> <div> <div> <p>In this work, structure-based rational design led to the development of potent and selective alkynyl bisubstrate inhibitors of NNMT. The reported nicotinamide-SAM conjugate (named <b>NS1</b>) features an alkyne as a key design element that closely mimics the linear, 180° transition state geometry found in the NNMT-catalyzed SAM → NAM (nicotinamide) methyl transfer reaction. NS1 was synthesized as a single enantiomer and diastereomer in 14 steps and found to be a high-affinity, subnanomolar NNMT inhibitor. An X-ray co-crystal structure and structure-activity relationship (SAR) study revealed the unique ability of an alkynyl linker to span the methyl transfer tunnel of NNMT with ideal shape complementarity. The compounds reported in this work represent the most potent and selective NNMT inhibitors reported to date. The rational design principle described herein could potentially be extended to other methyltransferase enzymes. </p> </div> </div> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.