Remote sensing technologies can be applied for a wide range of gas leak flowrates and in three main cases: (1) major leaks in crisis management; (2) medium size leaks in safety monitoring; (3) small leaks in environmental monitoring.
A gas test campaign, conducted by Total, the ONERA – the French Aerospace Lab – and ADCIS in September 2015 using three hyperspectral infrared cameras from Telops, confirmed our capacity to visualize in 3D and quantify in real time plumes of methane in the range of 1 g/s to 50g/s. The R&D project on gas remote quantification continued with a second gas test campaign in 2017.
The second gas test campaign was organized on Total's Lacq Pilot Platform in France and involved several gas spectral imaging systems: (1) mobile hyperspectral cameras in the Long-Wavelength InfraRed (LWIR) band (7.7-12μm); (2) a multispectral camera in the LWIR band (7-9μm); (3) a multigas lidar (LIght Detection And Ranging) system coupled with a wind lidar system; (4) five other international teams (US, Spain, Norway and France) were also invited to assess the capacity of their remote-sensing systems to quantify methane and carbon dioxide releases.
The two-week test demonstrated that methane leak emissions ranging from 0.7 g/s to 140 g/s could be visualized and quantified in real time using a mobile Telops Hyper-Cam. This campaign also served to validate the performance of several remote sensing technologies.
Total's Lacq Pilot Platform is a test area for qualifying cost-effective systems designed to complement the gas detection system of a plant and provide valuable information should a gas leak incident occur. New methodologies for the early detection of anomalies using remote observation systems including drones, robots and artificial intelligence data processing systems are currently being investigated there.
In order to quantify the damage caused by undesired events involving leakages of flammable materials, specific models are used to analyze the spills or jets of gas and liquid, gas dispersion, explosions and fires. The main step of this analysis is to estimate the concentration, in space and time, of the vapor cloud of hazardous substances released into the atmosphere; the purpose is to determine the area where a fire or explosion might occur and the quantity of flammable material in that area. Recently with the computational advances, CFD tools are used to short and medium range gas dispersion scenarios, especially in scenarios where there is a complex geometry. However, the accuracy of the simulating strongly depends on the boundary conditions. Therefore, this study investigates the sensitivity degree of the prediction of cloud dispersion to changes in values of wind speed, ambient temperature, atmospheric pressure and ground roughness. This paper contributes to an appropriate assessment of the effects of these environment conditions to perform an accurate dispersion simulation using CFD tools and therefore contributes to a more effective analysis of the consequences .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.