This paper describes a novel two-degree-of-freedom robotic interface to train opening/closing of the hand and knob manipulation. The mechanical design, based on two parallelogram structures holding an exchangeable button, offers the possibility to adapt the interface to various hand sizes and finger orientations, as well as to right-handed or left-handed subjects. The interaction with the subject is measured by means of position encoders and four force sensors located close to the output measuring grasping and insertion forces. Various knobs can be mounted on the interface, including a cone mechanism to train a complete opening movement from a strongly contracted and closed hand to a large opened position. We describe the design based on measured biomechanics, the redundant safety mechanisms as well as the actuation and control architecture. Preliminary experiments show the performance of this interface and some of the possibilities it offers for the rehabilitation of hand function.
We have developed a robotic interface to train hand and finger function. HandCARE is a Cable-Actuated REhabilitation system, in which each finger is attached to an instrumented cable loop allowing force control and a predominantly linear displacement. The device, whose designed is based on biomechanical measurements, can assist the subject in opening and closing movements and can be adapted to accommodate various hand shapes and finger sizes. Main features of the interface include a differential sensing system, and a clutch system which allows independent movement of the five fingers with only one actuator. The device is safe, easily transportable, and offers multiple training possibilities. This paper presents the biomechanical measurements carried out to determine the requirements for a finger rehabilitation device, and the design and characterization of the complete system.
ABSTRACT:The choice of an adequate actuation method is a central issue in the development of any mechatronic device and strongly determines the dynamic performances of the system. This choice is particularly difficult for robotic systems working within a magnetic resonance (MR) environment because of the safety and compatibility constraints imposed by the high magnetic field, switching gradients, electromagnetic pulses, and sensitive measuring equipment involved. This article analyzes actuation methods for robotic systems to be used within a magnetic resonance environment, such as systems for diagnostic and interventional MRI, neuroscience studies during functional MRI, and diagnostic fMRI. In the case of functional MRI, actuation is also required during imaging, whereas current MR-compatible interventional systems are typically moved between imaging phases. Our analysis is based on a variety of actuation principles that we have tested both for MR compatibility and for the quality of force feedback that can be realized, including hydrostatic, belt, and cable transmissions as well as electrostatic and piezoelectric actuators. The results are completed with developments of other groups. A good solution to a given application often involves a combination of several actuation principles. A synthesis of characteristics and three comparative tables aid in the choice of an adequate actuation method for a given task or application.
Background Rehabilitation of hand function is challenging, and only few studies have investigated robot-assisted rehabilitation focusing on distal joints of the upper limb. This paper investigates the feasibility of using the HapticKnob , a table-top end-effector device, for robot-assisted rehabilitation of grasping and forearm pronation/supination, two important functions for activities of daily living involving the hand, and which are often impaired in chronic stroke patients. It evaluates the effectiveness of this device for improving hand function and the transfer of improvement to arm function. Methods A single group of fifteen chronic stroke patients with impaired arm and hand functions (Fugl-Meyer motor assessment scale (FM) 10-45/66) participated in a 6-week 3-hours/week rehabilitation program with the HapticKnob . Outcome measures consisted primarily of the FM and Motricity Index (MI) and their respective subsections related to distal and proximal arm function, and were assessed at the beginning, end of treatment and in a 6-weeks follow-up. Results Thirteen subjects successfully completed robot-assisted therapy, with significantly improved hand and arm motor functions, demonstrated by an average 3.00 points increase on the FM and 4.55 on the MI at the completion of the therapy (4.85 FM and 6.84 MI six weeks post-therapy). Improvements were observed both in distal and proximal components of the clinical scales at the completion of the study (2.00 FM wrist/hand, 2.55 FM shoulder/elbow, 2.23 MI hand and 4.23 MI shoulder/elbow). In addition, improvements in hand function were observed, as measured by the Motor Assessment Scale, grip force, and a decrease in arm muscle spasticity. These results were confirmed by motion data collected by the robot. Conclusions The results of this study show the feasibility of this robot-assisted therapy with patients presenting a large range of impairment levels. A significant homogeneous improvement in both hand and arm function was observed, which was maintained 6 weeks after end of the therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.