The pressure towards innovation and creation of new model systems in regenerative medicine and cancer research has fostered the development of novel potential therapeutic applications. Kidney injuries provoke a high request of organ transplants making it the most demanding system in the field of regenerative medicine. Furthermore, renal cancer frequently threaten patients’ life and aggressive forms still remain difficult to treat. Ethical issues related to the use of embryonic stem cells, has fueled research on adult, patient-specific pluripotent stem cells as a model for discovery and therapeutic development, but to date, normal and cancerous renal experimental models are lacking. Several research groups are focusing on the development of organoid cultures. Since organoids mimic the original tissue architecture in vitro, they represent an excellent model for tissue engineering studies and cancer therapy testing. We established normal and tumor renal cell carcinoma organoids previously maintained in a heterogeneous multi-clone stem cell-like enriching medium. Starting from adult normal kidney specimens, we were able to isolate and propagate organoid 3D-structures composed of both differentiated and undifferentiated cells while expressing nephron specific markers. Furthermore, we were capable to establish organoids derived from cancer tissues although with a success rate inferior to that of their normal counterpart. Cancer cultures displayed epithelial and mesenchymal phenotype while retaining tumor specific markers. Of note, tumor organoids recapitulated neoplastic masses when orthotopically injected into immunocompromised mice. Our data suggest an innovative approach of long-term establishment of normal- and cancer-derived renal organoids obtained from cultures of fleshly dissociated adult tissues. Our results pave the way to organ replacement pioneering strategies as well as to new models for studying drug-induced nephrotoxicity and renal diseases. Along similar lines, deriving organoids from renal cancer patients opens unprecedented opportunities for generation of preclinical models aimed at improving therapeutic treatments.
A series of 60 cases of oxyphilic (Hurthle cell) carcinomas (HCC) of the thyroid were reviewed to determine whether it is possible to correlate morphologic and clinical features as a means of assessing prognosis. Twenty cases showing predominant solid or trabecular patterns (as described in poorly differentiated carcinomas with a follicular pattern) were selected and the clinicopathological features were investigated. Based on cell size, two groups of solid or trabecular HCCs were identified: The first group (17 cases) was made up of typical large granular oxyphilic cells, and the second (three cases) had small oxyphilic cells. All tumors were reactive for thyroglobulin and for a mitochondrial antigen, selectively marking oxyphilic, mitochondrial-rich cells. Nuclear pleomorphism in individual cells was a common feature, but foci of anaplastic carcinoma were never found. Four cases overexpressed p53 protein and 10 expressed bcl-2 gene product. At follow-up, among the high-stage (pT3-pT4) tumors, seven patients had recurrences or metastases, six of whom were alive with disease or died of disease. In the control group of HCC with predominant follicular patterns, only one of 40 cases had a fatal outcome. The difference was statistically significant. Small-cell patterns and a p53 protein-positive/bcl-2 gene product negative phenotype were features of clinically aggressive HCC cases. We suggest that within the spectrum of oxyphilic (Hurthle cell) tumors, poorly differentiated HCC showing solid or trabecular patterns are a distinct group, based on both morphological and clinical features.
Although a significant subset of prostate tumors remain indolent during the entire life, the advanced forms are still one of the leading cause of cancer-related death. There are not reliable markers distinguishing indolent from aggressive forms. Here we highlighted a new molecular circuitry involving microRNA and coding genes promoting cancer progression and castration resistance. Our preclinical and clinical data demonstrated that c-Met activation increases miR-130b levels, inhibits androgen receptor expression, promotes cancer spreading and resistance to hormone ablation therapy. The relevance of these findings was confirmed on patients' samples and by in silico analysis on an independent patient cohort from Taylor's platform. Data suggest c-Met/miR-130b axis as a new prognostic marker for patients' risk assessment and as an indicator of therapy resistance. Our results propose new biomarkers for therapy decision-making in all phases of the pathology. Data may help identify high-risk patients to be treated with adjuvant therapy together with alternative cure for castration-resistant forms while facilitating the identification of possible patients candidates for anti-Met therapy. In addition, we demonstrated that it is possible to evaluate Met/miR-130b axis expression in exosomes isolated from peripheral blood of surgery candidates and advanced patients offering a new non-invasive tool for active surveillance and therapy monitoring.
BackgroundClear cell RCC (ccRCC) accounts for approximately 75% of the renal cancer cases. Surgery treatment seems to be the best efficacious approach for the majority of patients. However, a consistent fraction (30%) of cases progress after surgery with curative intent. It is currently largely debated the use of adjuvant therapy for high-risk patients and the clinical and molecular parameters for stratifying beneficiary categories. In addition, the treatment of advanced forms lacks reliable driver biomarkers for the appropriated therapeutic choice. Thus, renal cancer patient management urges predictive molecular indicators and models for therapy-decision making.MethodsHere, we developed and optimized new models and tools for ameliorating renal cancer patient management. We isolated from fresh tumor specimens heterogeneous multi-clonal populations showing epithelial and mesenchymal characteristics coupled to stem cell phenotype. These cells retained long lasting-tumor-propagating capacity provided a therapy monitoring approach in vitro and in vivo while being able to form parental tumors when orthotopically injected and serially transplanted in immunocompromised murine hosts.ResultsIn line with recent evidence of multiclonal cancer composition, we optimized in vitro cultures enriched of multiple tumor-propagating populations. Orthotopic xenograft masses recapitulated morphology, grading and malignancy of parental cancers. High-grade but not the low-grade neoplasias, resulted in efficient serial transplantation in mice. Engraftment capacity paralleled grading and recurrence frequency advocating for a prognostic value of our developed model system. Therefore, in search of novel molecular indicators for therapy decision-making, we used Reverse-Phase Protein Arrays (RPPA) to analyze a panel of total and phosphorylated proteins in the isolated populations. Tumor-propagating cells showed several deregulated kinase cascades associated with grading, including angiogenesis and m-TOR pathways.ConclusionsIn the era of personalized therapy, the analysis of tumor propagating cells may help improve prediction of disease progression and therapy assignment. The possibility to test pharmacological response of ccRCC stem-like cells in vitro and in orthotopic models may help define a pharmacological profiling for future development of more effective therapies. Likewise, RPPA screening on patient-derived populations offers innovative approach for possible prediction of therapy response.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0874-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.