Background
Immune checkpoint inhibitors (ICIs) have revolutionised treatment of advanced non-small cell lung cancer (aNSCLC), but a proportion of patients had no clinical benefit and even experienced detrimental effects. This study aims to characterise patients experiencing hyperprogression (HPD) and early death (ED) by longitudinal liquid biopsy.
Methods
aNSCLC receiving ICIs were prospectively enrolled. Plasma was collected at baseline (T1) and after 3/4 weeks of treatment, according to the treatment schedule (T2). Cell-free DNA (cfDNA) was quantified and analysed by NGS. cfDNA quantification and variant allele fraction (VAF) of tumour-associated genetic alterations were evaluated for their potential impact on outcome. The genetic alteration with the highest VAF (maxVAF) at baseline was considered as a reference.
Results
From March 2017 to August 2019, 171 patients were enrolled. Five cases matched criteria for HPD and 31 ED were recorded; one overlapped. Quantification of cfDNA at T2 and its absolute and relative variation (T2–T1) were significantly associated with the risk of ED (P = 0.012, P = 0.005, P = 0.009). MaxVAF relative change (T2–T1/T1) was significantly associated with the risk of HPD (P = 0.02). After identifying optimal cut-off values, a two-step risk assessment model was proposed.
Discussion
Liquid biopsy performed early during treatment has the potential to identify patients at high risk of ED and HPD.
BackgroundMolecular profiling of advanced EGFR mutated NSCLC has recently demonstrated the co-existence of multiple genetic alterations. Specifically, co-existing KRAS-mutations in EGFR NSCLCs have been described, despite their prevalence at progression and their role in the response to EGFR tyrosine kinase inhibitors (TKIs) remain marginally explored. Aim of our study was to investigate the prevalence of co-existing KRAS mutations at the time of progressive disease and explore their impact on clinical outcome.Materials and MethodsWe retrospectively analyzed by digital droplet PCR prevalence of KRAS co-mutations in 106 plasma samples of EGFR mutated NSCLC patients, in progressive disease after EGFR TKI treatment as first-line therapy.ResultsKRAS co-mutations (codon 12 and 13) were identified in 3 patients (2.8% of analyzed samples), with low allelic frequency (<0.2%), and had a negative impact on clinical outcome to first-line EGFR TKI.ConclusionDetection of KRAS mutations in cell-free DNA of EGFR mutant NSCLC patients at progression after first or second generation EGFR TKI is a rare event. Due to their low abundance, the negative impact of KRAS mutations on the response to EGFR TKI remains to be confirmed in larger studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.